
Pan Configuration Language

10.0

Charles Loomis

Pan Configuration Language: 10.0
Charles Loomis

Publication date 2013-02-26
Copyright © 2013 Centre National de la Recherche Scientifique (CNRS)

This work is licensed under the Creative Commons Attribution 3.0 Unported License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative Commons, 171 Second Street,
Suite 300, San Francisco, California, 94105, USA.

http://creativecommons.org/licenses/by/3.0/

Table of Contents | iii

Table of Contents

Preface ... ix

Organization ... ix
Typographic Conventions ... ix

1. Getting Started ... 1

Configuration Language .. 1
Benefits ... 2
Download and Installation ... 2
Validating the Installation .. 3
Invoking the Pan Compiler ... 3

2. A Whirlwind Tour ... 5

Batch System Description ... 5
Naive Configuration .. 6
Using Namespaces and Includes ... 7
Simple Typing ... 8
Default Values .. 10
Cross-Element and Cross-Machine Validation 11
Path Prefixes .. 13

3. Core Syntax .. 15

Templates ... 15
Comments ... 17
Statements .. 17

4. Data Types ... 21

Type Hierarchy ... 21
Properties and Primitive Types ... 22
String-Like Types .. 24
Resources ... 25
Special Types ... 26

5. Data Manipulation Language (DML) ... 27

DML Syntax .. 27
Variables ... 27
Operators .. 28
Flow Control .. 29

6. Functions .. 32

Built-In Functions .. 32
User-Defined Functions .. 36

Table of Contents | iv

7. Validation .. 37

Forcing Validation ... 37
Implicit Typing ... 38
Binding Primitive Types to Paths .. 38
User-Defined Types .. 38
Default Values .. 40
Advanced Parameter Validation ... 40
Validation Functions .. 41
Validation of Correlated Configuration Parameters 41
Cross-Machine Validation ... 43
Schemas ... 44

8. Modular Configurations .. 45

Include Statement ... 45
Structure Templates .. 47

9. Advanced Features .. 49

Annotations ... 49
Logging ... 51
Build Metadata .. 52

10. Performance Considerations .. 53

Use Specific Paths ... 53
Use Escaped Literal Path Syntax ... 53
Use Built-In Functions ... 54
Invoking the Compiler ... 54
Avoid Copying SELF .. 54

11. Common Idioms ... 55

Configuration File Templates .. 55
Extension Templates .. 56
Global Variables as Switches ... 56
Tri-state Variables ... 57

12. Troubleshooting ... 58

Compilation Problems ... 58
Common Problems ... 59
Bug Reporting ... 60

A. Obtaining the Compiler .. 61

Binary Distributions ... 61
Source ... 61
Installation ... 62

Table of Contents | v

B. Running the Compiler ... 64

Command Line ... 64
Using java Command ... 65
Maven ... 65
Ant ... 68
Invocation Inside Eclipse .. 72

C. Command Reference .. 74

panc .. 75
panc-annotations ... 78
panc-build-stats.pl ... 79
panc-call-tree.pl ... 80
panc-compile-stats.pl .. 81
panc-memory.pl .. 82
panc-profiling.pl ... 83
panc-threads.pl ... 84

D. Built-In Function Reference ... 85

append .. 86
base64_decode ... 88
base64_encode ... 89
clone ... 90
create .. 91
debug .. 92
delete .. 93
deprecated .. 94
digest ... 95
error .. 96
escape ... 97
exists ... 98
file_contents .. 99
first .. 100
format .. 101
if_exists ... 102
index .. 103
is_boolean ... 106
is_defined .. 107
is_double ... 108
is_list ... 109
is_long ... 110
is_nlist ... 111
is_null .. 112
is_number ... 113
is_property .. 114

Table of Contents | vi

is_resource .. 115
is_string ... 116
key .. 117
length .. 118
list .. 119
match .. 120
matches ... 121
merge .. 122
nlist .. 123
next ... 124
path_exists .. 125
prepend ... 126
replace .. 128
return ... 129
splice ... 130
split .. 131
substr .. 132
to_boolean .. 133
to_double .. 134
to_long .. 135
to_lowercase ... 136
to_string .. 137
to_uppercase .. 138
traceback ... 139
unescape ... 140
value .. 141

List of Figures | vii

List of Figures
1.1. Graph of configuration produced by hello_world.pan. 4
4.1. Pan language type hierarchy .. 22

List of Tables | viii

List of Tables
1. Typographic Conventions .. ix
5.1. Unary DML Operators ... 28
5.2. Binary DML Operators .. 28
5.3. Operator Precedence (lowest to highest) 29
6.1. String Manipulation Functions ... 32
6.2. Debugging Functions .. 33
6.3. Encoding and Decoding Functions ... 33
6.4. Resource Manipulation Functions ... 33
6.5. Type Checking Functions ... 34
6.6. Type Conversion Functions .. 35
6.7. Miscellaneous Functions ... 35
B.1. PanBuild Mojo Parameters ... 66
B.2. PanCheckSyntax Mojo Parameters .. 68
B.3. Ant Task Attributes ... 69

Preface | ix

Preface

Organization
This book is intended to act as both a reference guide for the pan configuration
language as well as a tutorial on using the associated compiler. The first chapter
introduces the language and guides you through a basic installation of the compiler.
The following chapter provides a simplified, real-world example to show the major
features of the pan language for site configuration. Chapters 3-8 provide a detailed
description of the pan language and act as a reference for it. Chapters 9-11 provide
information about advanced features and best practices when using the language.
Finally, Chapter 12 gives some information about troubleshooting problems that
can arise when using the compiler and language. The appendices provide detailed
information on installing and using the compiler in various environments as well as
detailed information on the pan commands and functions.

Typographic Conventions
Table 1. Typographic Conventions

filename References to files are typeset in this style. In this book, these
are usually references to configuration templates.

command Commands to be executed from the command line are typeset
in this style. This is usually a direct or indirect invocation of the
pan configuration language compiler.

keyword Pan configuration language keywords are typeset in this style.
They represent the language's reserved words and should appear
in configuration files exactly as written.

Getting Started | 1

CHAPTER 1

Getting Started

The pan configuration language allows system administrators to define
simultaneously a site configuration and a schema for validation. As a core
component of the Quattor fabric management toolkit, the pan compiler translates
this high-level site configuration to a machine-readable representation, which other
tools can then use to enact the desired configuration changes.

Configuration Language

The pan language was designed to have a simple, human-friendly syntax. In
addition, it allows more rigorous validation via its flexible data typing features when
compared to, for instance, XML and XMLSchema.

The name "compiler" is actually a misnomer, as the pan compiler does much more
than a simple compilation. The processing progresses through five stages:

compilation Compile each individual template (file written
in the pan configuration language) into a binary
format.

execution The statements the templates are executed
to generate a partial tree of configuration
information. The generated tree contains all
configuration information directly specified by
the system administrator.

insertion of defaults A pass is made through the tree of configuration
information during which any default values
are inserted for missing elements. The tree of
configuration information is complete after this
stage.

Getting Started | 2

validation The configuration information is frozen and all
standard and user-specified validation is done.
Any invalid values or conditions will cause the
processing to abort.

serialization Once the information is complete and valid, it is
serialized to a file. Usually, this file is in an XML
format, but other representations are available as
well.

The pan compiler runs through these stages for each "object" template. Usually
there is one object template for each physical machine; although with the rise of
virtualization, it may be one per logical machine.

Benefits
Using the pan language and compiler has the following benefits:

• Declarative language allows easier merging of configurations from different
administrators.

• Encourages organization of configuration by service and function to allow
sharing of configurations between machines and sites.

• Provides simple syntax for definition of configuration information and validation.

• Ensures a high-level of validation before configurations are deployed, avoiding
interruptions in services and wasted time from recovery.

The language and compiler are intended to be used with other tools that manage
the full set of configuration files and that can affect the changes necessary to arrive
at the desired configuration. The Quattor toolkit provides such tools, although the
compiler can be easily used in conjunction with others.

Download and Installation
The pan compiler can be invoked via the Unix (Linux) command line, ant, or maven.
The easiest for the simple examples in this book is the command line interface.
(See Appendix A for installation instructions for all the execution methods.) Locate
and download the latest version of the pan tarball and untar this into a convenient
directory. You can find the packaged versions of the compiler in the Quattor project
space on SourceForge.

The pan compiler requires a Java Runtime Environment (JRE) or Java Development
Kit (JDK) 1.5 or later. If you will just be running a binary version of the pan
compiler, the JRE is sufficient; compiling the sources will require the JDK. Use

Getting Started | 3

a complete, certified version of the Java Virtual Machine; in particular avoid the
GNU Java Compiler (GJC) as the pan compiler will not run correctly with it.

To use the compiler from the command line, you must make it accessible from the
path.

$ export PANC_HOME=/panc/location
$ export PATH=$PANC_HOME/bin:$PATH

The above will work for Bourne shells; adjust the command for the shell that you
use. Change the value of PANC_HOME to the directory where the pan compiler was
unpacked.

Validating the Installation
Once you have installed the compiler, make sure that it is working correctly by
using the command:

$ panc --help

This gives a complete list of all of the available options. If the command fails, review
the installation instructions.

Invoking the Pan Compiler
Now create a file (called a "template") named hello_world.pan that contains
the following:

object template hello_world;
'/message' = 'Hello World!';

Compile this template into the default XML representation and look at the output.

$ panc hello_world.pan

$ cat hello_world.xml
<?xml version="1.0" encoding="UTF-8"?>
<nlist format="pan" name="profile">
 <string name="message">Hello World!</string>
</nlist>

The output should look similar to what is shown above. As you can see the generated
information has a simple structure: a top-level element of type nlist, named "profile"
with a single string child, named "message". The value of the "message" is "Hello
World!". If the output format is not specified, the default is the "pan" XML style
shown above, in which the element names are the pan primitive types and the name
attribute corresponds to the name of the field in the pan template.

The pan compiler can generate output in three additional formats: json, text, and
dot. The following shows the output for the json format that was written to the
hello_world.json file.

Getting Started | 4

$ panc --formats json hello_world.pan

$ cat hello_world.json
{
 "message": "Hello World!"
}

In this book, the most convenient representation is the text format. This provides a
clean representation of the configuration tree in plain text.

$ panc --formats text hello_world.pan

$ cat hello_world.txt
+-profile
 $ message : (string) 'hello'

The output file is named hello_world.txt. It provides the same information
as the other formats, but is easier to read.

The last style is the "dot" format.

$ panc --formats dot hello_world.pan

$ cat hello_world.dot
digraph "profile" {
bgcolor = beige
node [color = black, shape = box, fontname=Helvetica]
edge [color = black]
"/profile" [label = "profile"]
"/profile/message" [label = "message\n'Hello World!'"]
"/profile" -> "/profile/message"
}

Although the text is not very enlightening by itself, it can be used by Graphviz
[http://www.graphviz.org/] to generate a graph of the configuration. Processing
the above file with Graphviz produces the image shown in Figure 1.1, “Graph of
configuration produced by hello_world.pan.”.

profile

message
'hello'

Figure 1.1. Graph of configuration produced by hello_world.pan.

http://www.graphviz.org/
http://www.graphviz.org/

A Whirlwind Tour | 5

CHAPTER 2

A Whirlwind Tour

This tour will highlight the major features of the pan language by showing how
the configuration for a batch system for asynchronous handling of jobs could be
described with the pan language. The fictitious, simplified batch system used here
gives you the flavor of the development process and common pan features. The
description of a real batch system would contain significantly more parameters and
services.

Batch System Description
A batch system provides a set of resources for asynchronous execution of jobs
(scripts) submitted by users. The batch system (or cluster) consists of:

Server (or head node) A machine containing a service for accepting
job requests from users and a scheduler for
dispatching those jobs to available workers.

Workers Machines that accept jobs from the server,
execute them, and then return the results to the
server.

Users send a script containing the job description to the server. The server then
queues the request for later execution. The scheduler periodically checks the queued
jobs and resources, sending a queued job for execution on a worker if one is
available. The worker executes the job it has been given and keeps the server
informed about the state of the job. At the end of the job, results are returned to the
server. The user can interact with the server to determine the status of jobs and to
retrieve the output of completed jobs.

For our simplified batch system, we want to create a set of parameters that describe
the configuration. For many real services, the configuration schema used in pan will
closely mirror the configuration file(s) of the service. In our case we will create a
configuration schema based on the above description.

A Whirlwind Tour | 6

The server controls a set of workers and manages jobs via a set of queues. Each
queue is named, has a CPU limit, and can be enabled or disabled. Each node also
has a name, participates in one or more queues, and has a set of capabilities (e.g. a
particular software license is available, has a fast network connection, etc.).

The worker needs to know with which server to communicate. Each worker will
also have a flag to indicate if the worker is enabled or disabled.

Naive Configuration
Given the previous description, a pan language configuration for both the batch
server and one batch worker can easily be created. We must create an object
template for each machine in order to have the machine descriptions created during
the compilation. Create the file server.example.org.pan with the following
contents:

object template server.example.org;

'/batch/server/nodes/worker01.example.org/queues'
 = list('default');

'/batch/server/nodes/worker01.example.org/capabilities'
 = list('sw-license', 'fast-network');

'/batch/server/queues/default/maxCpuHours' = 1;
'/batch/server/queues/default/enabled' = true;

It is customary to use the machine name as the object template name. For this server,
there is one worker node named 'worker01.example.org' and one queue named
'default'. The worker node participates in the 'default' queue and has a couple of
capabilities. The 'default' queue has a CPU limit of 1 hour.

Create the file worker01.example.org.pan for the worker:

object template worker01.example.org;

'/batch/worker/server' = 'server.example.org';
'/batch/worker/enabled' = true;

This is part of the cluster controlled by the server 'server.example.org' and is
enabled.

These templates can be compiled with the following command:

$ panc --formats text *.pan

which then produces the files server.example.org.txt and
worker01.example.org.txt:

+-profile
 +-batch
 +-server
 +-nodes
 +-worker01.example.org

A Whirlwind Tour | 7

 +-capabilities
 $ 0 : (string) 'sw-license'
 $ 1 : (string) 'fast-network'
 +-queues
 $ 0 : (string) 'default'
 +-queues
 +-default
 $ maxCpuHours : (long) '1'

+-profile
 +-batch
 +-worker
 $ enabled : (boolean) 'true'
 $ server : (string) 'server.example.org'

These generated files (or more likely their equivalents in XML) can then be used
by tools to actually configure the machines and batch services appropriately.

Using Namespaces and Includes
The naive configuration shown in the previous section has a couple of problems.
First, it will become tedious to maintain, especially if individual machines contain
a mix of different services. Second, similar configurations would be duplicated
between object templates, increasing the likelihood of errors. These problems
can be eliminated by refactoring the configuration into separate templates and by
organizing those templates into reasonable namespaces.

As a first step in reorganizing the configuration, we pull out the batch server
and worker configurations into separate ordinary templates. These configurations
are put into services/batch-server.pan and services/batch-
worker.pan, respectively.

template services/batch-server;

'/batch/server/nodes/worker01.example.org/queues'
 = list('default');

'/batch/server/nodes/worker01.example.org/capabilities'
 = list('sw-license', 'fast-network');

'/batch/server/queues/default/maxCpuHours' = 1;
'/batch/server/queues/default/enabled' = true;

template services/batch-worker;

'/batch/worker/server' = 'server.example.org';
'/batch/worker/enabled' = true;

Note that these files are not object templates (i.e. there is no object modifier) and
will not produce any output files themselves. Note also that they are namespaced;
the relative directory of the template must match the path hierarchy in the file
system. In this particular case, these both must appear in a services subdirectory.

Object templates can also be namespaced; here we will put them into a profiles
subdirectory. These object templates can then include configuration in other (non-
object) templates. The contents of these profiles becomes:

A Whirlwind Tour | 8

object template profiles/server.example.org;

include 'services/batch-server';

object template profiles/worker01.example.org;

include 'services/batch-worker';

Organizing the service configurations in this way makes it easy to include multiple
services in a particular object template. If reasonable names are chosen, then the
object template becomes self-documenting, listing the services included on the
machine.

The command to compile these object templates is slightly different:

$ panc --formats text profiles/*.pan

The output files by default will be placed next to the object template, so in this case
they will be in the profiles subdirectory. You can verify that the reorganized
configuration produces exactly the same configuration as the first example.

Simple Typing
Although the configuration is completely specified in the previous examples, it
does not protect you from inappropriate values, for instance, specifying 'ON'
for the boolean worker's enabled parameter or a negative number for the
maxCpuHours parameter of a queue. The pan language has a number of primitive
types, collections, and mechanisms for user-defined types.

Create a file named services/batch-types.pan with the following content:

declaration template services/batch-types;❶

type batch_capabilities❷ = string[];

type batch_queue_list❸ = string[1..];

type batch_node❹ = {
 'queues' : batch_queue_list
 'capabilities' ? batch_capabilities
};

type batch_queue❺ = {
 'maxCpuHours' : long(0..)
 'enabled' : boolean
};

type batch_server❻ = {
 'nodes' : batch_node{}
 'queues' : batch_queue{}
};

type batch_worker❼ = {
 'server' : string
 'enabled' : boolean
};

A Whirlwind Tour | 9

❼ The batch_worker type defines a record (nlist or hash with named children) for
the worker configuration. The 'enabled' flag is defined to be a boolean value.
The 'server' is defined to be a string. For a real configuration, the server would
likely be define to be a hostname or IP address with appropriate constraints.

❻ The batch_server type also defines a record with nodes and queues children.
These are both defined to be nlists where the keys are the worker host name
or the queue name, respectively. The notation mytype{} defines an nlist.

❺ Type batch_queue type defines a record with the characteristics of a queue.
Each queue can be enabled or disabled. The maxCpuHours is required to be
a non-negative long value. The range specification (0..) limits the allowed
values. Range limits like this apply to the numeric value for long and double
types; it applies to the length for strings.

❹ Type batch_node again defines a record for a single node. The node
description contains a list of queues and a list of capabilities. In this case, the
record specifier uses a question mark ('?') indicating that the field is optional;
if the record specifier uses a colon (':') then the field is required.

❸ Type batch_queue_list is an alias for a list of strings, but also contains a range
limitation [1..]. This range limitation means that the list must contain at
least one element.

❷ Type batch_capabilities is just an alias for a list of strings. It is a convenience
type used to make the field description clearer.

❶ The template declaration uses the declaration modifier. This means that
the template will only be executed once during the build of a particular
machine profile. It also limits the content of the template to variable, function,
and type definitions.

A complete set of types is now available for the batch configuration, but at this
point, none of these types have been attached to a part of the configuration.
The bind statement associates a particular type to a path. Note that a single
path can have multiple type declarations associated with it. For the batch
configuration, the services/batch-server.pan and services/batch-
worker.pan have had a bind statement added.

template services/batch-server;

include 'services/batch-types';

bind '/batch/server' = batch_server;

'/batch/server/nodes/worker01.example.org/queues'
 = list('default');

'/batch/server/nodes/worker01.example.org/capabilities'
 = list('sw-license', 'fast-network');

'/batch/server/queues/default/maxCpuHours' = 1;
'/batch/server/queues/default/enabled' = true;

template services/batch-worker;

include 'services/batch-types';

A Whirlwind Tour | 10

bind '/batch/worker' = batch_worker;

'/batch/worker/server' = 'server.example.org';
'/batch/worker/enabled' = true;

Types have been bound to two paths with these bind statements. If any of the
content does not conform to the specified types, then an error will occur during the
compilation. Note that we have not limited the values for paths other than these two
paths and their children. Configuration in other paths can be added without being
subject to these type definitions. A global schema can be defined by binding a type
definition to the root path '/'.

Default Values
Very often configuration parameters can have reasonable default values, avoiding
the need to specify them explicitly within a machine profile. The pan type system
allows default values to be defined and then inserted into a machine configuration
when necessary. The following is a modified version of the batch-types.pan
file with default values added.

declaration template services/batch-types;

type batch_capabilities = string[];

type batch_queue_list = string[1..];

type batch_node = {

 'queues' : batch_queue_list = list('default') ❶
 'capabilities' ? batch_capabilities
};

type batch_queue = {

 'maxCpuHours' : long(0..) = 1 ❷

 'enabled' : boolean = true ❸
};

type batch_server = {
 'nodes' : batch_node{}

 'queues' : batch_queue{} = nlist('default', nlist()) ❹
};

type batch_worker = {
 'server' : string

 'enabled' : boolean = true ❺
};

❶ If the queue list for a node is not specified, then assume that the node will
participate in the 'default' queue. That is, the default value is a one-element
list containing the string 'default'.

❷ Default to 1 CPU-hour for the queue execution limit.

❸ By default, a queue will be enabled.

❹ If no queues are specified, then provide an nlist containing only a queue
definition for the 'default' queue. Note that the actual queue parameters are
provided by the type definition batch_queue.

❺ By default, a worker will be enabled.

A Whirlwind Tour | 11

Using these default values, then simplifies the configuration templates
services/batch-server.pan and services/batch-worker.pan.

template services/batch-server;

include 'services/batch-types';

bind '/batch/server' = batch_server;

'/batch/server/nodes/worker01.example.org/capabilities'
 = list('sw-license', 'fast-network');

template services/batch-worker;

include 'services/batch-types';

bind '/batch/worker' = batch_worker;

'/batch/worker/server' = 'server.example.org';

Compiling these templates will result in exactly the same generated files as with
the previous configuration in which the default values were explicitly specified in
the configuration. To use a value other than the default, the path just needs to be
assigned the desired value. The defaults mechanism will never replace a value which
was explicitly specified in the configuration.

Cross-Element and Cross-Machine
Validation
Much of the power of using the pan language comes from its ability to ensure
the consistency between different elements within a machine profile and between
configurations of different machine profiles. In our example we have two cases
where these types of validations would be useful: 1) the list of queues for a node
should only reference defined queues and 2) the worker list on the server and the
defined workers should be consistent.

The file batch-types.pan will be expanded to include validation functions for
these cases. Each validation function must return true if the value is valid. If the
value is not valid, then the function can return false or throw an exception via
the error function. The error function allows you to provide a descriptive error
message for the user. The contents of the modified file are:

declaration template services/batch-types;

function valid_batch_queue_list❶ = {
 foreach (index; queue_name; ARGV[0]) {
 if (!path_exists('/batch/server/queues/' + queue_name)) {
 return(false);
 };
 };
 true;
};

function valid_batch_node_nlist❷ = {
 foreach (hostname; properties; ARGV[0]) {

A Whirlwind Tour | 12

 path = 'profiles/' + hostname + ':/batch/worker';
 if (!path_exists(path)) {
 error(path + ' doesn''t exist');
 return(false);
 };
 };
 true;
};

function server_exists❸ = {
 return(path_exists('profiles/' + ARGV[0] + ':/batch/server'));
};

function server_knows_about_me❹ = {
 regex = '^profiles/(.*)$';
 if (match(OBJECT, regex)) {
 parts = matches(OBJECT, regex);
 path = 'profiles/' + ARGV[0] +
 ':/batch/server/nodes/' + parts[1];
 if (!path_exists(path)) {
 error(path + ' doesn''t exist');
 };
 } else {
 error(OBJECT + ' doesn''t match ' + regex);
 };
 true;
};

function valid_server❺ = {
 (server_exists(ARGV[0]) && server_knows_about_me(ARGV[0]));
};

type batch_capabilities = string[];

type batch_queue_list = string[1..];

type batch_node = {
 'queues' : batch_queue_list = list('default')

 with valid_batch_queue_list(SELF)❻
 'capabilities' ? batch_capabilities
};

type batch_queue = {
 'maxCpuHours' : long(0..) = 1
 'enabled' : boolean = true
};

type batch_server = {

 'nodes' : batch_node{} with valid_batch_node_nlist(SELF)❼
 'queues' : batch_queue{} = nlist('default', nlist())
};

type batch_worker = {

 'server' : string with valid_server(SELF)❽
 'enabled' : boolean = true
};

❶ The argument to this function is the batch queue list for a node. The function
loops over the queue names and ensures that the associated path in the
configuration exists. For example for the 'default' queue, the path '/batch/
server/queues/default' must exist.

❷ The argument to this function is the nlist of worker nodes. The function
loops over the worker node entries and constructs a path using the worker

A Whirlwind Tour | 13

node name. For example for the worker node 'worker01.example.org', it
will construct the path 'worker01.example.org:/batch/worker'. This is an
external path that references another machine profile. In this case, the server
profile 'server.example.org' will reference all of the worker profiles, e.g.
'worker01.example.org'. If the node is configured as a worker, the path '/batch/
worker' will exist on the node.

❸ The argument to this function is the name of the server as configured on a
worker node. Similar to the previous function, this constructs a path on the
referenced server and verifies that it exists. In this example, each worker will
verify that the path 'server.example.org:/batch/server' exists.

❹ The argument to this function is also the name of the server as configured
on a worker node. This function will extract the list of workers in the server
configuration and ensure that the worker's name appears. This uses a regular
expression to extract the machine name from the OBJECT variable, which
contains the name of the object template being processed. The constructed
path will exist if the server configuration contains the named worker node.

❺ The argument to this function is the name of the server. It is a convenience
function that combines the previous two functions.

These functions are tied to a type definition using a with clause. The with clause
will execute the given code block for the given type after the profile has been fully
constructed. Usually, the code block will reference the special variable SELF, which
contains the value associated with the given type. Although any block of code can
be used in the type definition, it is best practice to define a validation function with
the code and reference that validation function. This makes the type definition easier
to read. The with clauses for the cross-element and cross-machine validation are:

❻ Run the valid_batch_queue_list function for all of the node queue
lists.

❼ Run the valid_batch_node_nlist function for the server's node nlist.

❽ Run the valid_server function for the worker node's configured server.

This type of validation ensures internal and external consistency of machine
configurations and can significantly enhance confidence in the defined
configurations. Note that the cross-machine validation will work even with circular
dependencies, allowing server and client validation for services.

Path Prefixes
Although in this particular example there is a limited number of parameters set, most
real examples involve a large number of parameters and repetitive specifications
of similar absolute paths. The prefix pseudo-statement is a convenience for
reducing duplication in path specifications. The path provided in the prefix
statement will be applied to any relative paths found in a template after the prefix
statement.

A Whirlwind Tour | 14

As an example, we take the batch server configuration, adding a second worker
node.

template services/batch-server;

include 'services/batch-types';

bind '/batch/server' = batch_server;

prefix '/batch/server/nodes';

'worker01.example.org/capabilities'
 = list('sw-license', 'fast-network');

'worker02.example.org/capabilities' = list();

In this case, this saves us from having to duplicate the prefix '/batch/server/nodes' for
each worker node. Note that the prefix is expanded when the template is compiled
and does not affect any included templates. Although multiple prefix statements
can be used in a template, it is best practice to use only one near the beginning of
the template.

Core Syntax | 15

CHAPTER 3

Core Syntax

As you will have seen in the whirlwind tour, a complete site or service configuration
consists of a set of files called "templates". These files are usually managed via
a versioning system to track changes and to permit reverting to an earlier state.
The top-level syntax of the templates is especially simple: a template declaration
followed by a list of statements that are executed in sequence. The compiler will
serialize a machine profile, usually in XML format, for each "object" template it
encounters.

Templates

Syntax

A machine configuration is defined by a set of files, called templates, written
in the pan configuration language. These templates define simultaneously the
configuration parameters, the configuration schema, and validation functions. Each
template is named and is contained in a file having the same name.

The syntax of a template file is simple:

[modifier] template template-name;
[statement ...]

where the optional modifier is either object, structure, unique, or
declaration. There are five different types of templates that are identified by
the template modifier; the four listed above and an "ordinary" template that has no
modifier.

A template name is a series of substrings separated by slashes. Each substring may
consist of letters, digits, underscores, hyphens, periods, and pluses. The substrings
may not be empty or begin with a period; the template name may not begin or end
with a slash.

Core Syntax | 16

Each template must reside in a separate file with the name template-name.pan
with any terms separated with slashes corresponding to subdirectories. For example,
a template with the name "service/batch/worker-23" must have a file name of
worker-23.pan and reside in a subdirectory service/batch/.

Note

The older file extension "tpl" is also accepted by the pan compiler, but the
"pan" extension is preferred. If files with both extensions exist for a given
template, then the file with the "pan" extension will be used by the compiler.

Types of Templates

Object Templates

An object template is declared via the object modifier. Each object template is
associated with a machine profile and the pan compiler will, by default, generate an
XML profile for each processed object template. An object template may contain
any of the pan statements. Statements that operate on paths may contain only
absolute paths.

Object template names may be namespaced, allowing organization of object
templates in directory structures as is done for other templates. For the automatic
loading mechanism to find object templates, the root directory containing them
must be specified explicitly in the load path (either on the command line or via the
LOADPATH variable).

Ordinary Templates

An ordinary template uses no template modifier in the declaration. These templates
may contain any pan statement, but statements must operate only on absolute paths.

Unique Templates

A template defined with the unique modifier behaves like an ordinary template
except that it will only be included once for each processed object template. It has
the same restrictions as an ordinary template. It will be executed when the first
include statement referencing the template is encountered.

Declaration Templates

A template declared with a declaration modifier is a declaration template.
These templates may contain only those pan statements that do not modify the
machine profile. That is, they may contain only type, bind, variable, and function
statements. A declaration template will only be executed once for each processed

Core Syntax | 17

object template no matter how many times it is included. It will be executed when
the first include statement referencing the template is encountered.

Structure Templates

A template declared with the structure modifier may only contain include
statements and assignment statements that operate on relative paths. The include
statements may only reference other structure templates. Structure templates are an
alternative for creating nlists and are used via the create function.

Comments
These files may contain comments that start with the hash sign ('#') and terminate
with the next new line or end of file. Comments may occur anywhere in the file
except in the middle of strings, where they will be taken to be part of the string itself.

Whitespace in the template files is ignored except when it is used to separate
language tokens.

Statements

Assignment

Assignment statements are used to modify a part of the configuration tree by
replacing the subtree identified by its path by the result of the execution a DML
block. This result can be a single property or a resource holding any number of
elements. The unconditional assignment is:

[final] path = dml;

where the path is represented by a string literal. Single-quoted strings are slightly
more efficient, but double-quoted strings work as well.

The assignment will create parents of the value that do not already exist.

If a value already exists, the pan compiler will verify that the new value has a
compatible type. If not, it will terminate the processing with an error.

If the final modifier is used, then the path and any children of that path may not
be subsequently modified. Attempts to do so will result in a fatal error.

A conditional form of the assignment statement also exists:

[final] path ?= dml;

where the path is again represented by a string literal. The conditional form (?=)
will only execute the DML block and assign a value if the named path does not exist
or contains the undef value.

Core Syntax | 18

Prefix

The prefix (pseudo-)statement provides an absolute path used to resolve relative
paths in assignment statements that occur afterwards in the template. It has the form:

prefix '/some/absolute/path';

The path must be an absolute path or an empty string. If the empty string is given, no
prefix is used for subsequent assignment statements with relative paths. The prefix
statement can be used multiple times within a given template.

This statement is evaluated at compile time and only affects assignment statements
in the same file as the definition.

Include

The include statement acts as if the contents of the named template were included
literally at the point the include statement is executed.

include dml;

The DML block must evaluate to a string, undef, or null. If the result is undef
or null, the include statement does nothing; if the result is a string, the named
template is loaded and executed. Any other type will generate an error.

Ordinary templates may be included multiple times. Templates marked as
declaration or unique templates will be only included once where first
encountered. Includes which create cyclic dependencies are not permitted and will
generate a fatal error.

There are some restrictions on what types of templates can be included. Object
templates cannot be included. Structure templates can only include and be
included by other structure templates. Declaration templates can only include other
declaration templates. All other combinations are allowed.

Variable Definition

Global variables can be defined via a variable statement. These may be referenced
from any DML block after being defined. They may not be modified from a DML
block; they can only be modified from a variable statement. Like the assignment
statement there are conditional and unconditional forms:

[final] variable identifier ?= dml;
[final] variable identifier = dml;

For the conditional form, the DML block will only be evaluated and the assignment
done if the variable does not exist or has the undef value.

Core Syntax | 19

If the final modifier is used, then the variable may not be subsequently modified.
Attempts to do so will result in a fatal error.

Pan provides several automatic global variables: OBJECT, SELF, FUNCTION,
TEMPLATE, and LOADPATH. OBJECT contains the name of the object template
being evaluated; it is a final variable. SELF is the current value of a path referred to
in an assignment or variable statement. The SELF reference cannot be modified, but
children of SELF may be. FUNCTION contains the name of the current function,
if it exists. FUNCTION is a final variable. TEMPLATE contains the name of the
template that invoked the current DML block; it is a final variable. LOADPATH can
be used to modify the load path used to locate template for the include statement.

Any valid identifier may be used to name a global variable.

Caution

Global and local variables share a common namespace. Best practice
dictates that global variables have names with all uppercase letters (e.g.
MY_GLOBAL_VAR) and local variables have names with all lowercase
letters (e.g. my_local_var). This avoids conflicts and unexpected errors
when sharing configurations.

Function Definition

Functions can be defined by the user. These are arbitrary DML blocks bound to an
identifier. Once defined, functions can be called from any subsequent DML block.
Functions may only be defined once; attempts to redefine an existing function will
cause the compilation to abort. The function definition syntax is:

function identifier = dml;

See the Function section for more information on user-defined functions and a list
of built-in functions.

Note that the compiler keeps distinct function and type namespaces. One can define
a function and type with the same names.

Type Definition

Type definitions are critical for the validation of the generated machine profiles.
Types can be built up from the primitive pan types and arbitrary validation
functions. New types can be defined with

type identifier = type-spec;

A type may be defined only once; attempts to redefine an existing type will cause
the compilation to abort. Types referenced in the type-spec must already be defined.
See the Type section for more details on the syntax of the type specification.

Core Syntax | 20

Note that the compiler keeps distinct function and type namespaces. One can define
a function and type with the same name.

Validation

The bind statement binds a type definition to a path. Multiple types may be bound
to a single path. During the validation phase, the value corresponding to the named
path will be checked against the bound types.

bind path = type-spec;

See the Type section for a complete description of the type-spec syntax.

The valid statement binds a validation DML block to a path. It has the form:

valid path = DML;

This is a convenience statement and has exactly the same effect as the statement:

bind path = element with DML;

The pan compiler internally implements this statement as the bind statement above.

Data Types | 21

CHAPTER 4

Data Types

The data typing system forms the foundation of the validation features of the pan
language. All configuration elements are implicitly typed based on values assigned
to them. Types, once inferred, are enforced by the compiler.

Type Hierarchy

There are four primitive, atomic types in the pan language: boolean, long,
double, and string. Additionally, there are three string-like types: path, link,
and regular expression. These appear in special constructs and have additional
validity constraints associated with them. All of these atomic types are known as
"properties".

The language contains two types of collections: list and nlist. The 'list' is an ordered
list of elements, which uses the index (an integer) as the key. The named list (nlist)
associates a string key with a value; these are also known as hashes or associative
lists. These collections are known as "resources".

The complete type hierarchy is shown in Figure 4.1, “Pan language type hierarchy”,
including the two special types undef and null.

Data Types | 22

elementundef null

resourceproperty

nlist listbooleanstringnumber

long double

link
regular

expression
path

Figure 4.1. Pan language type hierarchy

Implicit Typing

If you worked through the exercises of the previous section, you will have
discovered that although you have an intuitive idea of what type a particular
path should contain (e.g. /hardware/cpu/number should be positive long),
the pan compiler does not. Downstream tools to configure a machine will likely
expect certain values to have certain types and will produce errors or erroneous
configurations if the correct type is not used. One of the strengths of the
pan language is to specify constraints on the values to detect problems before
configurations are deployed to machines.

All of the elements in a configuration will have a concrete data type assigned to
them. Usually this is inferred from the configuration itself. Once a concrete data type
has been assigned to an element, the compiler will enforce the data type, disallowing
replacement of a long value with a string, for instance. More detailed validation
must be explicitly defined in the configuration (see the Validation chapter).

Properties and Primitive Types

Boolean Literals

There are exactly two possible boolean values: true and false. They must appear
as an unquoted word and completely in lowercase.

Data Types | 23

Long Literals

Long literals may be given in decimal, hexadecimal, or octal format. A decimal
literal is a sequence of digits starting with a number other than zero. A hexadecimal
literal starts with the '0x' or '0X' and is followed by a sequence of hexadecimal digits.
An octal literal starts with a zero is followed by a sequence of octal digits. Examples:

123 # decimal long literal
0755 # octal long literal
0xFF # hexadecimal long literal

Long literals are represented internally as an 8-byte signed number. Long values
that cannot be represented in 8 bytes will cause a syntax error to be thrown.

Double Literals

Double literals represent a floating point number. A double literal must start with a
digit and must contain either a decimal point or an exponent. Examples:

0.01
3.14159
1e-8
1.3E10

Note that '.2' is not a valid double literal; this value must be written as '0.2'.

Double literals are represented internally as an 8-byte value. Double values that
cannot be represented in 8 bytes will cause a syntax error to be thrown.

String Literals

The string literals can be expressed in three different forms. They can be of any
length and can contain any character, including the NULL byte.

Single quoted strings are used to represent short and simple strings. They cannot
span several lines and all the characters will appear verbatim in the string, except
the doubled single quote which is used to represent a single quote inside the string.
For instance:

’foo’
’it’’s a sentence’
’ˆ\d+\.\d+$’

This is the most efficient string representation and should be used when possible.

Double quoted strings are more flexible and use the backslash to represent escape
sequences. For instance:

"foo"
"it’s a sentence"
"Java-style escapes: \t (tab) \r (carriage return) \n (newline)"
"Java-style escapes: \b (backspace) \f (form feed)"

Data Types | 24

"Hexadecimal escapes: \x3d (=) \x00 (NULL byte) \x0A (newline)"
"Miscellaneous escapes: \" (double quote) \\ (backslash)"
"this string spans two lines and\
does not contain a newline"

Invalid escape sequences will cause a syntax error to be thrown.

Multi-line strings can be represented using the 'here-doc' syntax, like in shell or Perl.

'/test' = 'foo' + <<EOT + 'bar';
this code will assign to the path '/test' the string
made of ‘foo’, plus this text including the final newline,
plus ‘bar’...
EOT

The contents of the 'here-doc' are treated as a single-quoted string. That is, no escape
processing is done.

The easiest solution to put binary data inside pan code is to base64 encode it and
put it inside "here-doc” strings like in the following example:

'/system/binary/stuff' = base64_decode(<<EOT);
H4sIAOwLyDwAA02PQQ7DMAgE731FX9BT1f8Q
Z52iYhthEiW/r2SitCdmxCK0E3W8no+36n2G
8UbOrYYWGROCgurBe4JeCexI2ahgWF5rulaL
tImkDxbucS0tcc3t5GXMAqeZnIYo+TvAmsL8
GGLobbUUX7pT+pxkXJc/5Bx5p0ki7Cgq5Kcc
GrCR8PzruUfP2xfJgVqHCgEAAA==
EOT

The base64_decode function is one of the built-in pan functions.

String-Like Types

Path

Pan paths are represented as string literals; either of the standard quoted forms for a
string literal can be used to represent a path. There are three different types of paths:
external, absolute, and relative.

An external path explicitly references an object template. The syntax for an external
path is:

my/external/object:/some/absolute/path

where the substring before the colon is the template name and the substring after
the colon is an absolute path. The leading slash of the absolute path is optional in
an external path. This form will work for both namespaced and non-namespaced
object templates.

An absolute path starts at the top of a configuration tree and identifies a node within
the tree. All absolute paths start with a slash ("/") and are followed by a series of
terms that identify a specific child of each resource. A bare slash ("/") refers to the

Data Types | 25

full configuration tree. The allowed syntax for each term in the path is described
below.

A relative path refers to a path relative to a structure template. Relative paths do
not start with a slash, but otherwise are identical to the absolute paths.

Terms may consist of letters, digits, underscores, hyphens, and pluses. Terms
beginning with a digit must be a valid long literal. Terms that contain other
characters must be escaped, either by using the escape function within a DML
block or by enclosing the term within braces for a path literal. For example, the
following creates an absolute path with three terms:

/alpha/{a/b}/gamma

The second term is equivalent to escape('a/b').

Link

A property can hold a reference to another element; this is known as a link. The
value of the link is the absolute path of the referenced element. A property explicitly
declared to be a link will be validated to ensure that 1) it represents a valid absolute
path and 2) that the given path exists in the final configuration.

Regular Expression

Regular expressions are written as a standard pan string literals. The implementation
exposes the Java regular expression syntax, which is largely compatible with the
Perl regular expression syntax. Because certain characters have a special meaning
in pan double quoted strings, characters like backslashes will need to be escaped;
consequently, it is preferable to use single-quoted strings for regular expression
literals.

When the compiler can infer that a string literal must be a regular expression, it
will validate the regular expression at compile time, failing when an invalid regular
expression is provided.

Resources
There are two types of resources supported by pan: list and nlist. A list is an ordered
list of elements with the indexing starting at zero. In the above example, there are
two lists /hardware/disks/ide and /hardware/nic. The order of a list
is significant and maintained in the serialized representation of the configuration.
An nlist (named list) associates a name with an element; these are also known as
hashes or associative arrays. One nlist in the above example is /hardware/cpu,
which has arch, cores, model, number, and speed as children. Note that
the order of an nlist is not significant and that the order specified in the template

Data Types | 26

file is not preserved in the serialized version of the configuration. Although the
algorithm for ordering the children of an nlist in the serialized file is not specified,
the pan compiler guarantees a consistent ordering of the same children from one
compilation to the next.

Within a given path, lists and nlists can be distinguished by the names of their
children. Lists always have children whose names are valid long literals. In the
following example, /mylist is a list with three children:

object template mylist;

'/mylist/0' = 'decimal index';
'/mylist/01' = 'octal index';
'/mylist/0x2' = 'hexadecimal index';

The indices can be specified in decimal, octal, or hexadecimal. The names of
children in an nlist must begin with a letter or underscore.

Special Types
The pan language contains two special types: undef and null.

The undef literal can be used to represent the undefined element, i.e. an element
which is neither a property nor a resource. The undefined element cannot be written
to a final machine profile and most built-in functions will report a fatal error when
processing it. It can be used to mark an element that must be overwritten during
the processing.

The null value deletes the path or global variable to which it is assigned. Most
operations and functions will report an error if this value is processed directly.

Data Manipulation Language (DML) | 27

CHAPTER 5

Data Manipulation Language
(DML)

Any non-trivial configuration will need to have some values that are calculated.
The Data Manipulation Language (DML), a subset of the full pan configuration
language, fulfills this role. This subset has the features of many imperative
programming languages, but can only be used on the right-hand side of a statement,
that is, to calculate a value.

DML Syntax

A DML block consists of one or more statements separated by semicolons. The
block must be delimited by braces if there is more than one statement. The value
of the block is the value of the last statement executed within the block. All DML
statements return a value, even flow control statements like if and foreach.

Variables

To ease data handling, you can use local variables in any DML expression. They
are scoped to the outermost enclosing DML expression. They do not need to be
declared before they are used. The local variables are destroyed once the outermost
enclosing DML block terminates.

As a first approximation, variables work the way you expect them to work. They
can contain properties and resources and you can easily access resource children
using square brackets:

populate /table which is an nlist
’/table/red’ = ’rouge’;
’/table/green’ = ’vert’;

’/test’ = {
 x = list(’a’, ’b’, ’c’); # x is a list

Data Manipulation Language (DML) | 28

 y = value(’/table’); # y is a nlist
 z = x[1] + y[’red’]; # z is a string ('arouge')
 length(z); # this will be 6
};

Local variables are subject to primitive type checking. So the primitive type of a
local variable cannot be changed unless the variable is assigned to undef or null
between the type-changing assignments.

Global variables (defined with the variable statement) can be read from the DML
block. Global variables may not be modified from within the block; attempting to
do so will abort the execution.

Caution

Global and local variables share the same namespace. Consequently, there
may be unintended naming conflicts between them. The best practice to
avoid this is to name all local variables with all lowercase letters (e.g.
my_local_var) and all global variables with all uppercase letters (e.g.
MY_GLOBAL_VAR).

Operators
The operators available in the pan Data Manipulation Language (DML) are very
similar to those in the Java or c languages. The following tables summarize the
DML operators. The valid primitive types for each operator are indicated. Those
marked with "number" will take either long or double arguments. In the case of
binary operators, the result will be promoted to a double if the operands are mixed.

Table 5.1. Unary DML Operators

+ number preserves sign of argument

- number changes sign of argument

~ long bitwise not

! boolean logical not

Table 5.2. Binary DML Operators

+ number addition

+ string string concatenation

- number subtraction

* number multiplication

/ number division

% long modulus

Data Manipulation Language (DML) | 29

& long bitwise and

| long bitwise or

^ long bitwise exclusive or

&& boolean logical and (short-circuit logic)

|| boolean logical or (short-circuit logic)

== number equal

== string lexical equal

!= number not equal

!= string lexical not equal

> number greater than

> string lexical greater than

>= number greater than or equal

>= string lexical greater than or equal

< number less than

< string lexical less than

<= number less than or equal

<= string lexical less than or equal

Table 5.3. Operator Precedence (lowest to highest)

||

&&

|

^

&

==, !=

<, <=, >, >=

+ (binary), - (binary)

*, /, %

+ (unary), - (unary), !, ~

Flow Control
DML contains four statements that permit non-linear execution of code within a
DML block. The if statement allows conditional branches, the while statement
allows looping over a DML block, the for statement allows the same, and the
foreach statement allows iteration over an entire resource (list or nlist).

Data Manipulation Language (DML) | 30

Caution

These statements, like all DML statements, return a value. Be careful of this,
because unexecuted blocks generally will return undef, which may lead to
unexpected behavior.

Branching (if statement)

The if statement allows the conditional execution of a DML block. The statement
may include an else clause that will be executed if the condition is false. The
syntax is:

if (condition-dml) true-dml;
if (condition-dml) true-dml else false-dml;

where all of the blocks may either be a single DML statement or a multi-statement
DML block.

The value returned by this statement is the value returned by the true-dml or
false-dml block, whichever is actually executed. If the else clause is not
present and the condition-dml is false, the if statement returns undef.

Looping (while and for statements)

Simple looping behavior is provided by the while statement. The syntax is:

while (condition-dml) body-dml;

The loop will continue until the condition-dml evaluates as false. The value
of this statement is that returned by the body-dml block. If the body-dml block
is never executed, then undef is returned.

The pan language also contains a for statement that in many cases provides a more
concise syntax for many types of loops. The syntax is:

for (initialization-dml; condition-dml; increment-dml) body-dml;

The initialization-dml block will first be executed. Before each iteration
the condition-dml block will be executed; the body-dml will only be
executed (again) if the condition evaluates to true. After each iteration, the
increment-dml block is executed. If the condition never evaluates to true,
then the value of the statement will be that of the initialization-dml. All
of the DML blocks must be present, but those not of interest can be defined as just
undef.

Note that the compiler enforces an iteration limit to avoid infinite loops. Loops
exceeding the iteration limit will cause the compiler to abort the execution. The
value of this limit can be set via a compiler option.

Data Manipulation Language (DML) | 31

Iteration (foreach statement)

The foreach statement allows iteration over all of the elements of a list or nlist.
The syntax is:

foreach (key; value; resource) body-dml;

This will cause the body-dml to be executed once for each element in resource
(a list or nlist). The local variables key and value (you can choose these names)
will be set at each iteration to the key and value of the element. For a list, the key
is the element's index. The iteration will always occur in the natural order of the
resource: ordinal order for lists and lexical order of the keys for nlists.

The value returned will be that of the last iteration of the body-dml. If the body-
dml is never executed (for an empty list or nlist), undef will be returned.

The foreach statement is not subject to the compiler's iteration limit. By definition,
the resource has a finite number of entries, so this safeguard is not needed.

This form of iteration should be used in preference to the first, next, and key
functions whenever possible. It is more efficient than the functional forms and less
prone to error.

Functions | 32

CHAPTER 6

Functions

The pan configuration has a rich set of built-in functions for manipulating elements
and for debugging. In addition, user-defined functions can be specified, which are
often used to make configurations more modular and maintainable.

Built-In Functions
Built-in functions are actually treated as operators within the DML language.
Because of this, they are highly optimized and often process their arguments
specially. In all cases, users should prefer built-in functions to user-defined
functions when possible. The following tables describe all of the built-in functions;
refer to the appendix to see the arguments and other detailed information about the
functions.

Table 6.1. String Manipulation Functions

file_contents(3) Lookup the named file and provide the file's contents as a string.

format(3) Generate a formatted string based on the formatting parameters
and the values provided.

index(3) Return the index of a substring or -1 if the substring is not
found.

length(3) Gives the length of a string.

match(3) Return a boolean indicating if a string matches the given regular
expression.

matches(3) Return an array containing the matched string and matched
groups for a given string and regular expression.

replace(3) Replace all occurrences of a substring within a given string.

splice(3) Remove a substring and optionally replace it with another.

split(3) Split a string based on a given regular expression and return an
array of the results.

Functions | 33

substr(3) Extract a substring from the given string.

to_lowercase(3) Change all of the characters in a string to lowercase (using the
US locale).

to_uppercase(3) Change all of the characters in a string to uppercase (using the
US locale).

Table 6.2. Debugging Functions

debug(3) Print a debugging message to the standard error stream. Returns
the message or undef.

error(3) Print an error message to the standard error and terminate
processing.

traceback(3) Print an error message to the standard error along with a
traceback. Returns undef.

deprecated(3) Print a warning message to the standard error if required by
the deprecation level in effect. Returns the message or
undef.

Table 6.3. Encoding and Decoding Functions

base64_decode(3)Decode a string that is encoded using the Base64 standard.

base64_encode(3)Encode a string using the Base64 standard.

digest(3) Create message digest using specified algorithm.

escape(3) Escape characters within the string to ensure string is a valid
nlist key (path term).

unescape(3) Transform an escaped string into its original form.

Table 6.4. Resource Manipulation Functions

append(3) Add a value to the end of a list.

create(3) Create an nlist from the named structure template.

first(3) Initialize an iterator over a resource. Returns a boolean to
indicate if more values exist in the resource.

nlist(3) Create an nlist from the given key/value pairs given as
arguments.

key(3) Find the n'th key in an nlist.

length(3) Get the number of elements in the given resource.

list(3) Create a list from the given arguments.

merge(3) Perge two resources into a single one. This function always
creates a new resource and leaves the arguments untouched.

Functions | 34

next(3) Extract the next value while iterating over a resource. Returns a
boolean to indicate if more values exist in the resource.

prepend(3) Add a value to the beginning of a list.

splice(3) Remove a section of a list and optionally replace removed
values with those in a given list.

Table 6.5. Type Checking Functions

is_boolean(3) Check if the argument is a boolean value. If the argument is a
simple variable reference and the referenced variable does not
exist, the function will return false rather than raising an error.

is_defined(3) Check if the argument is a value other than null or undef. If
the argument is a simple variable reference and the referenced
variable does not exist, the function will return false rather than
raising an error.

is_double(3) Check if the argument is a double value. If the argument is a
simple variable reference and the referenced variable does not
exist, the function will return false rather than raising an error.

is_list(3) Check if the argument is a list. If the argument is a simple
variable reference and the referenced variable does not exist, the
function will return false rather than raising an error.

is_long(3) Check if the argument is a long value. If the argument is a
simple variable reference and the referenced variable does not
exist, the function will return false rather than raising an error.

is_nlist(3) Check if the argument is an nlist. If the argument is a simple
variable reference and the referenced variable does not exist, the
function will return false rather than raising an error.

is_null(3) Check if the argument is a null. If the argument is a simple
variable reference and the referenced variable does not exist, the
function will return false rather than raising an error.

is_number(3) Check if the argument is either a long or double value. If the
argument is a simple variable reference and the referenced
variable does not exist, the function will return false rather than
raising an error.

is_property(3) Check if the argument is a property (long, double, or string). If
the argument is a simple variable reference and the referenced
variable does not exist, the function will return false rather than
raising an error.

is_resource(3) Check if the argument is a list or nlist. If the argument is a
simple variable reference and the referenced variable does not
exist, the function will return false rather than raising an error.

Functions | 35

is_string(3) Check if the argument is a string value. If the argument is a
simple variable reference and the referenced variable does not
exist, the function will return false rather than raising an error.

Table 6.6. Type Conversion Functions

to_boolean(3) Convert the argument to a boolean. Any number other than 0
and 0.0 is true. The empty string and the string 'false' (ignoring
case) return false. Any other string will return true. If the
argument is a resource, an error will occur.

to_double(3) Convert the argument to a double value. Strings will be parsed
to create a double value; any literal form of a double is valid.
Boolean values will convert to 0.0 and 1.0 for false
and true, respectively. Long values are converted to the
corresponding double value. Double values are unchanged.

to_long(3) Convert the argument to a long value. Strings will be parsed
to create a long value; any literal form of a long is valid (e.g.
hex or octal literals). Boolean values will convert to 0 and 1 for
false and true, respectively. Double values are rounded to
the nearest long value. Long values are unchanged.

to_string(3) Convert the argument to a string. The function will return a
string representation for any argument, including list and nlist.

Table 6.7. Miscellaneous Functions

clone(3) Create a deep copy of the given value.

delete(3) Delete a local variable or child of a local variable.

exists(3) Return true if the given argument exists. The argument can
either be a variable reference, path, or template name.

path_exists(3) Return true if the given path exists. The argument must be an
absolute or external path.

if_exists(3) For a given template name, return the template name if it
exists or undef if it does not. This can be used with the include
statement for a conditional include.

return(3) Interrupt the normal flow of processing and return the given
value as the result of the current frame (either a function call or
the main DML block).

value(3) Retrieve the value associated with the given path. The path may
either be an absolute or external path.

Functions | 36

User-Defined Functions
The pan language permits user-defined functions. These functions are essentially
a DML block bound to an identifier. Only one DML block may be assigned to a
given identifier. Attempts to redefine an existing function will cause the execution
to be aborted. The syntax for defining a function is:

function identifier = DML;

where identifier is a valid pan identifier and DML is the block to bind to it.

When the function is called, the DML will have the variables ARGC and ARGV
defined. The variable ARGC contains the number of arguments passed to the
function; ARGV is a list containing the values of the arguments.

Note that ARGV is a standard pan list. Consequently, passing null values (intended
to delete elements) to functions can have non-obvious effects. For example, the call:

f(null);

will result is an empty ARGV list because the null value deletes the nonexistent
element ARGV[0].

The pan language does not check the number or types of arguments automatically.
The DML block that defines the function must make all of these checks explicitly
and use the error function to emit an informative message in case of an error.

Recursive calls to a function are permitted. However, the call depth is limited (by
an option when the compiler is invoked) to avoid infinite recursion. Typically, the
maximum is a small number like 10. Recursion is expensive within the pan language
and should be avoided if possible.

The following example defines a function that checks if the number of arguments
is even and are all numbers:

function paired_numbers = {

 if (ARGC%2 != 0) {
 error('number of arguments must be even');
 };

 foreach (k, v, ARGV) {
 if (! is_number(v)) {
 error('non-numeric argument found');
 };
 };

 'ok';

};

Validation | 37

CHAPTER 7

Validation

The greatest strength of the pan language is the ability to do detailed validation of
configuration parameters, of correlated parameters within a machine profile, and of
correlated parameters between machine profiles. Although the validation can make
it difficult to get a particular machine profile to compile, the time spent getting a
valid machine configuration before deployment more than makes up for the time
wasted debugging a bad configuration that has been deployed.

Forcing Validation

Simple validation through the validation of primitive properties and simple
resources has already been covered when discussing the pan type definition features.
This chapter deals with more complicated scenarios.

The following statement will bind an existing type definition (either a built-in
definition or a user-defined one) to a path in a machine configuration:

bind path = type-spec;

where path is a valid path name and type-spec is either a type specification
or name of an existing type.

Full type specifications are of the form:

identifier = constant with validation-dml

where constant is a DML block that evaluates to a compile-time constant (the
default value), and the validation-dml is a DML block that will be run to
validate paths associated with this type. Both the default value and validation block
are optional. The identifier can be any legal name with an optional array
specifier and/or range afterwards. For example, an array of 5 elements is written
int[5] or a string of length 5 to 10 characters string(5..10).

Validation | 38

Implicit Typing
If you worked through the previous chapters, you will have discovered that although
you have an intuitive idea of what type a particular path should contain (e.g. /
hardware/cpu/number should be positive long), the pan compiler does not.
The compiler will infer an element's data type from the first value assigned to it.
From then on it will enforce that type, raising an error if, for instance, a double is
replaced by a string. If necessary, the implicit type can be removed from an element
by assigning it to undef before changing the value.

Binding Primitive Types to Paths
Downstream machine configuration tools will likely expect parameters to have
certain types, producing errors or erroneous configurations if the correct type is not
used. One of the strengths of the pan language is to specify explicit constraints on
the element to detect problems before configurations are deployed to machines.

At the most basic level, a system administrator can tell the pan compiler that a
particular element must be a particular type. This is done with the bind statement.
To tell the compiler that the path /hardware/cpu/number must be a long
value, add the following statement to the nfsserver.example.org example.

bind '/hardware/cpu/number' = long;

This statement can appear anywhere in the file; all of the specified constraints will
be verified after the complete configuration is built. Setting this path to a value that
is not a long or not setting the value at all will cause the compilation to fail.

The above constraint only does part of the work though; the value could still be set
to zero or a negative value without having the compiler complain. Pan also allows a
range to be specified for primitive values. Changing the statement to the following:

bind '/hardware/cpu/number' = long(1..);

will require that the value be a positive long value. A valid range can have the
minimum value, maximum value, or both specified. A range is always inclusive
of the endpoint values. The endpoint values must be long literal values. A range
specified as a single value indicates an exact match (e.g. 3 is short-hand for 3..3).
A range can be applied to a long, double, or string type definition. For strings, the
range is applied to the length of the string.

User-Defined Types
Users can create new types built up from the primitive types and with optional
validation functions. The general format for creating a new type is:

type identifier = type-spec;

Validation | 39

where the general form for a type specification type-spec is given above.

Probably the easiest way to understand the type definitions is by example. The
following are "alias" types that associate a new name with an existing type, plus
some restrictions.

type ulong1 = long with SELF >= 0;
type ulong2 = long(0..);
type port = long(0..65535);
type short_string = string(..255);
type small_even = long(-16..16) with SELF % 2 == 0;

Similarly one can create link types for elements in the machine configuration:

type mylink = long(0..)* with match(SELF, 'r$');

Values associated to this type must be a string ending with 'r'; the value must be a
valid path that references an unsigned long value.

Slightly more complex is to create uniform collections:

type long_list = long[10];
type matrix = long[3][4];
type double_nlist = double{};
type small_even_nlist = small_even{};

Here all of the elements of the collection have the same type. The last example
shows that previously-defined, user types can be used as easily as the built-in
primitive types.

A record is an nlist that explicitly names and types its children. A record is by far,
the most frequently encountered type definition. For example, the type definition:

type cpu = {
 'vendor' : string
 'model' : string
 'speed' : double
 'fpu' ? boolean
};

defines an nlist with four children named 'vendor', 'model', etc. The first three fields
use a colon (":") in the definition and are consequently required fields; the last uses
a question mark ("?") and is optional. As defined, no other children may appear in
nlists of this type. However, one can make the record extensible with:

type cpu = extensible {
 'vendor' : string
 'model' : string
 'speed' : double
 'fpu' ? boolean
};

This will check the types of 'vendor', 'model', etc., but will also allow children of the
nlist with different unlisted names to appear. This provides some limited subclassing
support. Each of the types for the children can be a full type specification and may
contain default values and/or validation blocks. One can also attach default values
or validation blocks to the record as a whole.

Validation | 40

Default Values
Looking again at the nfsserver.example.org configuration, there are a
couple of places where we could hope to use default values. The pxeboot and
boot flags in the nic and disk type definitions could use default values. In both
cases, at most one value will be set to true; all other values will be set to false.
Another place one might want to use default values is in the cpu type; perhaps we
would like to have number and cores both default to 1 if not specified.

Pan allows type definitions to contain default values. For example, to change the
three type definitions mentioned above:

type cpu = {
 'model' : string
 'speed' : double(0..)
 'arch' : string
 'cores' : long(1..) = 1
 'number' : long(1..) = 1
};

type nic = {
 'mac' : string
 'pxeboot' : boolean = false
};

type disk = {
 'label' ? string
 'capacity' : long(1..)
 'boot' : boolean = false
};

With these definitions, the lines which set the pxeboot and boot flags to false
can be removed from the configuration and the compiler will still produce the same
result. The default value will only be used if the corresponding element does not
exist or has the undef value after all of the statements for an object have been
executed. Consequently, a value that has been explicitly defined will always be used
in preference to the default. Although one can set a default value for an optional
field in a record, it will have an effect only if the value was explicitly set to undef.

The default values must be a compile time constants.

Advanced Parameter Validation
Often there are cases where the legal values of a parameter cannot be expressed as
a simple range. The pan language allows you to attach arbitrary validation code to a
type definition. The code is attached to the type definition using the with keyword.
Consider the following examples:

type even_positive_long = long(1..) with (SELF % 2 == 0);

type machine_state_enum = string
 with match(SELF, 'open|closed|drain');

Validation | 41

type ip = string with is_ipv4(SELF);

The validation code must return the boolean value true, if the associated value is
correct. Returning any other value or raising an error with the error function will
cause the build of the machine configuration to abort.

Simple constraints are often written directly with the type statement; more
complicated validation usually calls a separate function. The third line in the
example above calls the function is_ipv4, which was defined in the next section.

Validation Functions
To simplify type definitions, validation functions are often defined. These are
user-defined functions defined using the standard function statement. They can
be referenced within a type definition just as they would be in any DML block.
However, validation functions must return a boolean value or raise an error with the
error function. A validation function that returns a non-boolean value will abort
the compilation. Similarly, a validation function that returns false will raise an
error indicating that the value for the tested element is invalid.

A validation function that checks that a value is a valid IPv4 address could look like:

function is_ipv4 = {
 terms = split('\.', ARGV[0]);
 foreach (index; term; terms) {
 i = to_long(term);
 if (i < 0 || i > 255) {
 return(false);
 };
 };
 true;
};

A real version of this function would probably do a great deal more checking of the
value and probably raise errors with more intuitive error messages.

Validation of Correlated Configuration
Parameters
Often the correct configuration of a machine requires that configuration parameters
in different parts of the configuration are correlated. One example is the validation
of the pre- and post-dependencies of the component configuration. It makes no sense
for one component to depend on another one that is not defined in the configuration
or is not active.

The following validation function accomplishes such a check, assuming that the
components are bound to /software/components:

function valid_component_list = {

Validation | 42

 # ARGV[0] should be the list to check.

 # Check that each referenced component exists.
 foreach (k; v; ARGV[0]) {

 # Path to the root of the named component.
 path = '/software/components/' + v;

 if (!exists(path)) {
 error(path + ' does not exist');
 } else {

 # Path to the active flag for the named component.
 active_path = path + '/active';

 if (!(is_defined(active_path) && value(active_path))) {
 error('component ' + v + ' isn't active');
 };

 };

 };

};

type component_list = string[] with valid_component_list(SELF);

type component = extensible {
 active : boolean = true
 pre ? component_list
 post ? component_list
};

It also defines a component_list type and uses this for a better definition of a the
component type. This will get run on anything that is bound to the component
type, directly or indirectly. Note how the function looks at other values in the
configuration by creating the path and looking up the values with the value
function.

The above function works but has one disadvantage: it will only work for
components defined below /software/components. If the list of components
is defined elsewhere, then this schema definition will have to be modified. One can
usually avoid this by applying the validation to a common parent. In this case, we
can add the validation to the parent.

function valid_component_nlist = {

 # Loop over each component.
 foreach (name; component; SELF) {

 if (exists(component['pre'])) {
 foreach (index; dependency; component['pre']) {
 if (!exists(SELF['dependency']['active'] ||
 SELF['dependency']['active'])) {
 error('non-existant or inactive dependency: '
 + dependency);
 };
 };
 };

 # ... same for post ...

Validation | 43

 };

};

type component = extensible {
 active : boolean = true;
 pre ? string[]
 post ? string[]
};

type component_nlist = component{} with valid_component_nlist(SELF);

This will accomplish the same validation, but will be independent of the location in
the tree. It is, however, significantly more complicated to write and to understand
the validation function. In the real world, the added complexity must be weighed
against the likelihood that the type will be re-located within the configuration tree.

The situation often arises that you want to validate a parameter against other siblings
in the machine configuration tree. In this case, we wanted to ensure that other
components were properly configured; to know that we needed to search "up and
over" in the machine configuration. The pan language does not allow use of relative
paths for the value function, so the two options are those presented here. Use an
absolute path and reconstruct the paths or put the validation on a common parent.

Cross-Machine Validation
Another common situation is the need to validate machine configurations against
each other. This often arises in client/server situations. For NFS, for instance, one
would probably like to verify that a network share mounted on a client is actually
exported by the server. The following example will do this:

Determine that a given mounted network share is actually
exported by the server.
function valid_export = {

 info = ARGV[0];
 myhost = info['host'];
 mypath = info['path'];

 exports_path = host + ':/software/components/nfs/exports';

 found = false;
 if (path_exists(exports_path)) {

 exports = value(exports_path);

 foreach (index; einfo; exports) {
 if (einfo['authorized_host'] == myhost &&
 einfo['path'] == mypath) {
 found = true;
 };
 };

 };
 found;
};

Validation | 44

Defines path and authorized host for NFS server export.
type nfs_exports = {
 'path' : string
 'authorized_host' : string
};

Type containing parameters to mount remote NFS volume.
type nfs_mounts = {
 'host' : string
 'path' : string
 'mountpoint' : string
} with valid_export(SELF);

Allows lists of NFS exports and NFS mounts (both optional).
type config_nfs = {
 include component
 'exports' ? nfs_exports[]
 'mounts' ? nfs_mounts[]
};

To do this type of validation, the full external path must be constructed for the
value function. This has the same disadvantage as above in that if the schema is
changed the function definition needs to be altered accordingly. The above code
also assumes that the machine profile names are equivalent to the hostname. If
another convention is being used, then the hostname will have to be converted to
the corresponding machine name.

It is worth noting that all of the validation is done after the machine configuration
trees are built. This allows circular validation dependencies to be supported. That is,
clients can check that they are properly included in the server configuration and the
server can check that its clients are configured. A batch system is a typical example
where this circular cross-validation is useful.

Schemas
The pan language allows complete configuration schema to be defined. Actually,
you are capable of doing this already as defining a schema is nothing more than
defining a type and binding that type to the root element. An example of this is:

object template schema_example;

include { 'type_definitions' };

type schema = {
 'software' : software_type
 'hardware' : hardware_type
 'packages' : packages_type
};

bind '/' = schema;

Actual definitions of parameters.
...

In this fictitious example, the concrete types would be defined in the included file
and the template would actually define the configuration parameters.

Modular Configurations | 45

CHAPTER 8

Modular Configurations

Defining the configuration for a machine with many services, let alone a full site,
quickly involves a large number of parameters. Often subsets of the configuration
can be shared between services or machines. To minimize duplication and
encourage sharing of configurations, the pan language has features to allow
modularization of the configuration.

Include Statement
So far only the hardware configuration and schema for one machine has been
defined with the nfsserver.example.org configuration. One could imagine
just doing a cut and paste to create the other three machines in our scenario. While
this will work, the global site configuration will quickly become unwieldy and error-
prone. In particular the schema is something that should be shared between all or
many machines on a site. Multiple copies means multiple copies to keep up-to-date
and multiple chances to introduce errors.

To encourage reuse of the configuration and to reduce maintenance effort, pan
allows one template to include another (with some limitations). For example,
the above schema can be pulled into another template (named common/
schema.tpl) and included in the main object template.

declaration template common/schema;

type location = extensible {
 'rack' : string
 'slot' : long(0..50)
};

type cpu = {
 'model' : string
 'speed' : double(0..)
 'arch' : string
 'cores' : long(1..)
 'number' : long(1..)
};

type disk = {

Modular Configurations | 46

 'label' ? string
 'capacity' : long(1..)
 'boot' : boolean
};

type disks = {
 'ide' ? disk[]
 'scsi' ? disk{}
};

type nic = {
 'mac' : string
 'pxeboot' : boolean
};

type hardware = {
 'location' : location
 'ram' : long(0..)
 'cpu' : cpu
 'disks' : disks
 'nic' : nic[]
};

type root = {
 'hardware' : hardware
};

The main object template then becomes:

object template nfsserver.example.org;

include 'common/schema';

bind '/' = root;

'/hardware/location/rack' = 'IBM04';
'/hardware/location/slot' = 25;

'/hardware/ram' = 2048;

'/hardware/cpu/model' = 'Intel Xeon';
'/hardware/cpu/speed' = 2.5;
'/hardware/cpu/arch' = 'x86_64';
'/hardware/cpu/cores' = 4;
'/hardware/cpu/number' = 2;

'/hardware/disk/ide/0/capacity' = 64;
'/hardware/disk/ide/0/boot' = true;
'/hardware/disk/ide/0/label' = 'system';
'/hardware/disk/ide/1/capacity' = 1024;
'/hardware/disk/ide/1/boot' = false;

'/hardware/nic/0/mac' = '01:23:45:ab:cd:99';
'/hardware/nic/0/pxeboot' = false;
'/hardware/nic/1/mac' = '01:23:45:ab:cd:00';
'/hardware/nic/1/pxeboot' = true;

There are three important changes to point out.

First, there is a new pan statement in the nfsserver.example.org template
to include the schema. The include statement takes the name of the template to
include as a string; the braces are mandatory. If the template is not included directly
on the command line, then the compiler will search the loadpath for the template.
If the loadpath is not specified, then it defaults to the current working directory.

Modular Configurations | 47

Second, the schema has been pulled out into a separate file. The first line of that
schema template is now marked as a declaration template. Such a template
can only include type, variable, and function declarations. Such a template will be
included at most once when building an object; all inclusions after the first will
be ignored. This allows many different template to reference type (and function)
declarations that they use without having to worry about accidentally redefining
them.

Third, the schema template name is common/schema and must be located in a file
called common/schema.pan; that is, it must be in a subdirectory of the current
directory called common. This is called namespacing and allows the templates that
make up a configuration to be organized into subdirectories. For the few templates
that are used here, namespacing is not critical. It is, however, critical for real sites
that are likely to have hundreds or thousands of templates. Note that the hierarchy
for namespaces is completely independent of the hierarchy used in the configuration
schema.

Pulling out common declarations and help maintain coherence between different
managed machines and reduce the overall size of the configuration. There are
however, more mechanisms to reduce duplication.

Structure Templates

Sites usually buy many identical machines in a single purchase, so much of the
hardware configuration for those machines is the same. Another mechanism that
can be exploited to reuse configuration parameters is a structure template. Such
a template defines an nlist that is initially independent of the configuration tree
itself. For our scenario, let us assume that the four machines have identical RAM,
CPU, and disk configurations; the NIC and location information is different for
each machine. The following template pulls out the common information into a
structure template:

structure template common/machine/ibm-server-model-123;

'ram' = 2048;

'cpu/model' = 'Intel Xeon';
'cpu/speed' = 2.5;
'cpu/arch' = 'x86_64';
'cpu/cores' = 4;
'cpu/number' = 2;

'disk/ide/0/capacity' = 64;
'disk/ide/0/boot' = true;
'disk/ide/0/label' = 'system';
'disk/ide/1/capacity' = 1024;
'disk/ide/1/boot' = false;

'location' = undef;
'nic' = undef;

Modular Configurations | 48

The structure template is not rooted into the configuration (yet) and hence all of the
paths in the assignment statements must be relative; that is, they do not begin with
a slash. Also, the location and nic children were set to undef. These are the
values that will vary from machine to machine, but we want to ensure that anyone
using this template sets those values. If someone uses this template, but forgets to
set those values, the compiler will abort the compilation with an error. The undef
value may not appear in a final configuration.

How is this used in the machine configuration? The include statement will not work
because we must indicate where the configuration should be rooted. The answer is
to use an assignment statement along with the create function.

object template nfsserver.example.org;

include 'common/schema';

bind '/' = root;

'/hardware' = create('common/machine/ibm-server-model-123');

'/hardware/location/rack' = 'IBM04';
'/hardware/location/slot' = 25;

'/hardware/nic/0/mac' = '01:23:45:ab:cd:99';
'/hardware/nic/0/pxeboot' = false;
'/hardware/nic/1/mac' = '01:23:45:ab:cd:00';
'/hardware/nic/1/pxeboot' = true;

Finally, the machine configuration contains only values that depend on the machine
itself with common values pulled in from shared templates.

Although the example here uses the hardware configuration, in reality it can be used
for any subtree that is invariant or nearly-invariant. One can even reuse the same
structure template many times in the same object just be creating a new instance
and assigning it to a particular part of the tree.

Advanced Features | 49

CHAPTER 9

Advanced Features

This chapter discusses annotations and logging, two advanced topics that can
be used to facilitate the management of sites and better understand a site's
configuration.

Annotations
The compiler supports pan language annotations and provides a mechanism for
recovering those annotations in a separate XML file. While the compiler permits
annotations to occur in nearly any location in a source file, only annotations attached
to certain syntactic elements can be recovered. Currently these are those before the
template declaration, variable declarations, function declarations, type declarations,
and field specifications. Examples of all are in the example file.

@maintainer{
 name = Jane Manager
 email = jane.manager@example.org
}
@{
 Example template that shows off the
 annotation features of the compiler.
}
object template annotations;

@use{
 type = long
 default = 1
 note = negative values raise an exception
}
variable VALUE ?= 1;

@documentation{
 desc = simple addition of two numbers
 arg = first number to add
 arg = second number to add
}
function ADD = {
 ARGV[0] + ARGV[1];
};

type EXTERN = {
 'info' ? string

Advanced Features | 50

};

@documentation{
 Simple definition of a key value pair.
}
type KV_PAIR = extensible {

 @{additional information fields}
 include EXTERN

 @{key for pair as string}
 'key' : string

 @{value for pair as string}
 'value' : string = to_string(2 + 3)
};

bind '/pair' = KV_PAIR;

'/add' = ADD(1, 2);

'/pair/key' = 'KEY';
'/pair/value' = 'VALUE';

The command will produce one output file for each source file, using the directory
hierarchy of the source files, not the namespace hierarchy. When processing the
files, you must provide both the desired output directory (which must exist) using
the --output-dir option, as well as the root file system directory for all of the
processed files with the --base-dir option. Using the following command to
process the file:

$ panc-annotations \
 --output-dir=annotations \
 --base-dir=. \
 annotations.pan

will produce the following output in the file
annotations.pan.annotation.xml (with whitespace and indentation
added for clarity).

<?xml version="1.0" encoding="UTF-8"?>
<template xmlns="http://quattor.org/pan/annotations"
 name="annotations"
 type="OBJECT">
 <desc>
 Example template that shows off the
 annotation features of the compiler.
</desc>

 <maintainer>
 <name>Jane Manager</name>
 <email>jane.manager@example.org</email>
 </maintainer>

 <variable name="VALUE">
 <use>
 <type>long</type>
 <default>1</default>
 <note>negative values raise an exception</note>
 </use>
 </variable>

 <function name="ADD">
 <documentation>

Advanced Features | 51

 <desc>simple addition of two numbers</desc>
 <arg>first number to add</arg>
 <arg>second number to add</arg>
 </documentation>
 </function>

 <type name="EXTERN">
 <basetype extensible="no">
 <field name="info" required="no">
 <basetype name="string" extensible="no"/>
 </field>
 </basetype>
 </type>

 <type name="KV_PAIR">
 <documentation>
 <desc>
 Simple definition of a key value pair.
</desc>
 </documentation>

 <basetype extensible="yes">
 <include name="EXTERN"/>
 <field name="key" required="yes">
 <desc>key for pair as string</desc>
 <basetype name="string" extensible="no"/>
 </field>
 <field name="value" required="yes">
 <desc>value for pair as string</desc>
 <basetype name="string" extensible="no"/>
 </field>
 </basetype>

 </type>
 <basetype name="KV_PAIR" extensible="no"/>
</template>

The output filename includes the full input filename because variants with different
suffixes may be present.

Logging
It is possible to log various activities of the pan compiler. The types of logging that
can be specified are:

task Task logging can be used to extract information about how long the
various processing phases last for a particular object template. The
build phases one will see in the log file are: execute, defaults, valid1,
valid2, xml, and dep. There is also a build stage that combines the
execute and defaults stages.

call Call logging allows the full inclusion graph to be reconstructed,
including function calls. Each include is logged even if the include
would not actually include a file because the included file is a
declaration or unique template that has already been included.

include Include logging only logs the inclusion of templates and does not log
function calls.

Advanced Features | 52

memory Memory logging show the memory usage during template processing.
This can be used to see the progression of memory utilization and can
be correlated with other activities if other types of logging are enabled.

all Turns all types of logging on.

none Turns all types of logging off.

Note that a log file name must also be specified, otherwise the logging information
will not be saved.

The logging information can be used to understand the performance of the compiler
and find bottlenecks in the configuration. It can also be used to extract information
about the relationships between templates, which are then commonly passed to
visualization tasks to allow a better understanding of the configuration. Many
examples are included in the distribution as analysis scripts. See the command
reference appendix for details.

Build Metadata
It is sometimes useful to be able to inject values into the compiled profiles without
having to explicitly include a template into each object template. This is particularly
appropriate for metadata like build numbers, build times, build machines, etc. This
can be achieved by setting the root element that is used to start the build of all
profiles. Use the rootElement attribute for ant and the --root-element
option for the command line. The value must be a DML expression that evaluates
to an nlist. For example, this expression

nlist('build-metadata', nlist('number', 1, 'date', '2012-01-01'))

would result in having the paths /build-metadata/number, /build-
metadata/date being set to 1 and 2012-01-01, respectively, in all object
templates.

Caution

Values inserted into the profiles in this way are still subject to the usual
validation. When inserting values, they must obey the schema you have
defined for the profile.

Performance Considerations | 53

CHAPTER 10

Performance Considerations

As configurations become larger, the speed at which the full configuration can
be compiled becomes important. The logging features presented in the previous
chapter can help identify slow parts of the compilation for you particular
configuration. This chapter contains general advice on making the compilation as
quick as possible.

Use Specific Paths
Whenever possible, use the most specific path and assign a property to that path.
The code:

'/path' = nlist('a', 1, 'b', 2);

and the block:

'/path/a' = 1;
'/path/b' = 2;

provide identical results, although the second example is easier to read and will be
better optimized by the compiler.

Use Escaped Literal Path Syntax
In previous versions of the compiler, it was necessary to use a DML block when
part of a path needed to be escaped:

'/path' = nlist(escape('a/b'), 1);

Newer versions of the compiler provide a literal path syntax in which escaped
portions can be written explicitly:

'/path/{a/b}' = 1;

This is both more legible and faster.

Performance Considerations | 54

Use Built-In Functions
Built-in functions are significantly faster than equivalents defined with the pan
language. In particular, the functions append and prepend should be used for
incrementally building up lists (in preference to push equivalents). There are
also functions like to_uppercase and to_lowercase that avoid character by
character manipulation of strings.

The list of available built-in functions continues to expand. Check the list of
functions with each new release of the compiler.

Invoking the Compiler
There are several ways to invoke the compiler, either from the command line,
from ant, or from maven. For single, infrequent invocations of the compiler they
are roughly equivalent in startup time. However, if the compiler will be invoked
frequently it is better to avoid using the command line panc script. The reason for
this is that the panc script starts a new JVM each time it is invoked, while the ant and
maven invocations can reuse their own JVM. This means that for the panc script,
you will pay the startup costs each time it is invoked while for ant or maven you
pay it them only once. The startup costs are particularly expensive if you request a
large amount of memory and do hundreds of compilations at a time.

Avoid Copying SELF
Assignments of SELF to a local variable inside of a code block will cause a deep
copy of SELF. In the following code, the local variable copy will contain a
complete replica of SELF.

'/path' = {
 copy = SELF;
 copy;
};

These copies can be time-consuming when SELF is a large resource or when the
code is executed frequently. If you manipulate SELF within a code block, always
reference SELF directly.

Also be aware that copy and SELF will contain independent copies so that changes
to copy to not affect SELF and vice versa. This can lead to bugs that are difficult
to find.

Common Idioms | 55

CHAPTER 11

Common Idioms

As you use the pan configuration, you will discover certain idioms which appear.
This chapter describes some of the common idioms so that you can take advantage
of them from the start and not need to rediscover them yourself.

Configuration File Templates
Although it is much better to create an abstracted schema for service configuration,
practically it is often useful to directly embed a configuration file directly in the
service configuration. In previous versions of the compiler, the configuration file
was often created incrementally in a global variable and then assigned to a path.
Something like the following was common:

variable USER = 'smith';
variable QUOTA = 10;

variable CONTENTS = <<EOF;
alpha = 1
beta = 2
EOF

variable CONTENTS = CONTENTS +
 'user = ' + USER + "\n";

variable CONTENTS = CONTENTS +
 'quota = ' + to_string(QUOTA) + "\n";

'/cfgfile' = CONTENTS;

This can be improved somewhat by using the format function:

variable USER = 'smith';
variable QUOTA = 10;

variable CFG_TEMPLATE = <<EOF;
alpha = 1
beta = 2
user = %s
quota = %d

Common Idioms | 56

EOF

'/cfgfile' = format(CFG_TEMPLATE, USER, QUOTA);

This can be further improved by moving the configuration template completely out
of the pan language file. For instance, create the file cfg-template.txt:

alpha = 1
beta = 2
user = %s
quota = %d

which can then be used like this:

variable USER = 'smith';
variable QUOTA = 10;

'/cfgfile' = format(file_contents('cfg-template.txt'),
 USER, QUOTA);

This is much easier to read and to maintain. It is especially helpful when the included
configuration file has a syntax for which an external editor can provide additional
help with validation.

Extension Templates
Often sets of templates that are intended for reuse will allow the configuration to
be extended or modified at particular points by including named templates. For
example, the following provides pre-configuration and post-configuration service
hooks:

template my_service/config;

include if_exists('my_service/prehook');

bulk of real service configuration

include if_exists('my_service/posthook');

In both of these cases, the named templates will be included if they can be found
on the loadpath. If they are not found, the includes do nothing.

Global Variables as Switches
Configuration intended for reuse also tends to expose switches for common
configuration options. The idiom looks like the following:

template my_service/config;

variable MY_OPTION ?= false;

'/my_service/config/my_option' =
 if (MY_OPTION) {
 'some value';
 } else {
 'some other value';

Common Idioms | 57

 };
};

In cases where the path simply should not exist if the option is not set, then using
a default value of null can be the best option:

template my_service/config;

variable MY_OPTION ?= null;

'/my_service/config/my_option' = MY_OPTION;

In this case, if the variable MY_OPTION is not set to a value before executing this
template, the null value will be used and the given path will simply be deleted.

Tri-state Variables
Occasionally is is useful to have tri-state variables. The most convenient values to
use in this case are true, false, and null. With these values as the three states,
you can use is_null to test explicitly for the third state. Using undef for the
third value can cause problems because variables are automatically set to undef
before executing a variable assignment statement.

Troubleshooting | 58

CHAPTER 12

Troubleshooting

Compilation Problems
In a production environment, the number of templates and their complexity will be
must greater. Often something goes wrong with the compilation or build resulting
in one or more errors appearing on the console (standard error stream). There are
four categories of errors:

Syntax Error These include any errors that can be caught during the
compilation of a single template. These include lexing,
parsing, and syntax errors, but also semantic errors like
absolute assignment statements appearing in a structure
template that can be caught at compilation time.

Evaluation Error These are the most common; these include any error
that happens during the "execution" phase of processing
like mathematical errors, primitive type conflicts, and the
like. Usually the name of the template and the location
where the error occurred will be included in the error
message.

Validation Error Validation errors occur during the "validation" phase
and indicate that the generated machine profile violates
the defined schema. Information about what type
specification was violated and the offending path will be
included in the error message.

System Error These include low-level problems like problems reading
from or writing to the file system.

In general, the errors try to indicate as precisely as possible the problem. Usually
the name of the source file as well as the location inside the file (line and

Troubleshooting | 59

column numbers) are indicated. For most evaluation exceptions, a traceback is also
provided. Validation errors are the most terse, giving only the element causing the
problem and the location of the type definition that has been violated.

There is one further class of errors called "compiler errors". These indicate an error
in the logic of the compiler itself and should be accompanied by a detailed error
message and a Java traceback. All compiler errors should be reported as a bug. The
bug report should include the template that caused the problem along with the full
Java traceback. Hopefully, you will not encounter these errors.

Common Problems
1.1. "Java Heap Space" warnings appear on console.

If you see messages that refer to "Java Heap Space" while running the
compiler, then the java virtual machine does not have enough memory to
compile the given templates. You must increase the amount of memory
allocated to the java virtual machine when you start the compiler. See the
section Running the Compiler for how to specify the VM memory.

1.2. The compilation is extremely slow.

If the compilation appears to be slow, check that the compiler is not
thrashing because of a limited amount of memory. With the verbose option
set, successful compilations will produce a summary like:

2 templates
2/2 compiled, 2/2 xml, 0/0 dep
0 errors, 166 ms, 0 MB/63 MB heap, 12 MB/116 MB nonheap

The last line with gives the maximum amount of heap memory used and
the maximum available (the value marked "heap"). If the maximum used is
more than about 80% of the maximum available, then you should consider
increasing the memory allocated to the java virtual machine. See the section
Running the Compiler for how to specify the VM memory.

1.3. "missing modifyThread Permission" warnings appear on console.

The java-implementation of the pan language compiler is completely multi-
threaded. Internally, it controls several thread pools to handle compilation,
execution, and serialization in parallel. At the end of a compilation, the
compiler will normally destroy the thread pools that were created. The java
security model requires that a program have the "modifyThread" permission
to destroy threads. In some environments (notably Eclipse), this permission
may not be given to the compiler. If this is the case, then the message
"WARNING: missing modifyThread permission" is printed on the standard
error. Lacking this permission causes a "thread leak", but the effects are

Troubleshooting | 60

minor unless an extremely large number of templates are being compiled.
If this is the case, then you should either change the configuration to grant
this permission to the compiler, or work in an environment that grants it by
default (e.g. using ant from the command line).

This problem is fixed if using Java6. If you have several JREs installed, be
sure to configure Eclipse to use Java 6. Go to Window → Preferences →
Java → Installed JREs. If you don't see the JRE you want (and you have it
installed), use the "Search" button to have eclipse configure the new JRE
for you. Make sure you select it after it is found.

1.4. Unnecessary rebuild of clusters

It can happen that a cluster is always rebuilt when you run ant, even if there
was no change in the dependencies. In this case, you may suspect a Java
issue with optimizations enabled by default (JIT). The only workaround is
to disable these optimizations by adding the option -Xint to Java VM when
running ant. It is achieved differently depending how you started ant:

• From command line: define environment variable ANT_OPTS.

• From Eclipse: right click on build.xml in ant pane, choose Run As... →
External Tools... and then click on JRE tab. Be sure to use a separate JRE
(if possible Java 6 or later) and add option in the options area.

This problem has been seen on Windows only, with Java 5 and Java 6.

Bug Reporting
The pan compiler, like all software, contains bugs. If the problem your experiencing
looks to be misbehavior by the compiler, please report the problem. Bug reports
can be filed in the standard Quattor bug tracking system on SourceForge. When
submitting a bug, please use the following options to be sure that the bug is noticed
as soon as possible.

Project: quattor
Category: panc
Assigned to: loomisc

to ensure that the bug is treated as soon as possible. Bug fixes are generally rolled
into the next planned release. Major releases are scheduled every six months. Bug
fix releases are planned monthly, if needed.

Obtaining the Compiler | 61

APPENDIX A

Obtaining the Compiler

Binary Distributions

Binary packages for all releases are available from SourceForge in a variety of
formats:

http://sourceforge.net/projects/quattor/files/

The same location also contains documentation for the compiler. This document is
also bundled in the distribution files.

Source

The source for the pan compiler is managed through a git repository. The software
can be checked out with the following command:

git clone git://quattor.git.sourceforge.net/gitroot/quattor/quattor/pan

This provides a read-only copy of the pan repository. If you need write access to
the repository, consult the SourceForge documentation to find how to checkout a
hosted git repository with write access. You will need to be a member of the Quattor
SourceForge project.

The master branch is the main development branch. Although an effort is made
to ensure that this code functions correctly, there may be times when it is broken.
Released versions can be found through the named branches and tags. Use the git
commands:

git branch -r
git tag -l

to see the available branches and tags.

Obtaining the Compiler | 62

Building

Correctly building the Java-implementation of the pan compiler requires version
1.5.0 or later of a Java Development Kit (JDK). Many linux distributions include
the GNU implementation of Java. The GNU implementation cannot build or run
the pan compiler correctly. Full versions of Java for linux, Solaris, and Windows
can be obtained from Oracle. Maven can be obtained from the Apache Foundation
web site.

The build of the compiler is done via Apache Maven that also depends on Java.
For Maven to find the correct version of the compiler, the environment variable
JAVA_HOME should be defined:

export JAVA_HOME=<path to java area>

or

setenv JAVA_HOME <path to java area>

depending on the type of shell that you use. After that, the entire build can be
accomplished with:

mvn clean package

where the current working directory is the root of the directory checked out from
subversion. The default build will compile all of the java sources, run the unit tests,
and package the compiler. Tarballs (plain, gzipped, and bzipped) as well as a zip
file are created on all platforms. The build will also create an RPM on platforms
that support it. The final packages can be found in the target subdirectory.

Note

Current builds of the compiler are done with Maven 2.2.1. The builds have
not yet been tested with the Maven 3 releases.

Installation
The proper installation of the pan compiler depends on how it will be used. If it will
be used from the command line (either directly or through another program), then
the full installation from a binary package should be done. However, if the compiler
will be run via ant, then one really only needs to install the panc.jar file.

Full Package Installation

Once you have a binary distribution of the compiler (either building it from
source or downloading a pre-built version), installation of the java compiler

Obtaining the Compiler | 63

should be relatively painless. The binary packages include the code, scripts, and
documentation of the compiler.

Tarballs/Zip File. Untar/unzip the package in a convenient area and redefine the
PATH variable to include the bin subdirectory. You should then have access to
panc and the various log file analysis scripts from the command line.

RPM. Simply using the command rpm (as root) to install the package will be
enough. The scripts and binaries will be installed in the standard locations on the
system. The RPM is not relocatable. If you need to install the compiler as a regular
user, use one of the machine-independent packages.

Using the compiler requires Java 1.5.0 or later to be installed on the system. If you
want to run the compiler from ant, then you must have ant version 1.7.0 or later
installed on your system.

Eclipse Integration

To integrate the compiler in an Integrated Development Environment (IDE) like
eclipse, only the file panc.jar is needed, presuming that the compiler will be
called via the ant task. Build files that reference the compiler must define the panc
task and then may use the task to invoke the compiler. See the documentation for
invoking the compiler from ant.

Running the Compiler | 64

APPENDIX B

Running the Compiler

To facilitate the use of the pan configuration language compiler in different
contexts, several mechanisms for running the compiler are supported, ranging from
direct invocation from the command line to use within build frameworks like ant
and maven.

The performance of the compiler can vary significantly depending on how the
compiler is invoked and on what options are used. Some general points to keep in
mind are:

• For large builds, try to start the underlying Java Virtual Machine (JVM) only
once. That is, avoid the command line interface and instead use one of the build
framework integrations.

• The pan compiler can be memory-intensive to medium to large-scale builds. Use
the verbose output to see the allocated and used heap space. Increase the allocated
memory for the JVM if the used memory exceeds about 80% of the total.

• Other JVM optimizations and options can improve performance. Check out what
options are available with your Java implementation and experiment with those
options.

The following sections provide details on the supported mechanisms for invoking
the pan configuration language compiler.

Command Line
The compiler can be invoked from the command line by using panc. This is a
script, which works in Unix-like environments, that starts a Java Virtual Machine
and invokes the compiler.

The full list of options can be obtained with the --help option or by looking on
the relevant man page.

Running the Compiler | 65

Using java Command
If the Java compiler class is being directly invoked via the java command, then
the option -Xmx must be used to change the VM memory available (for any
reasonably sized compilation). For example to start java with 1024 MB of memory,
the following command and options can be used:

java -Xmx1024M org.quattor.pan.Compiler [options...]

The same can be done for other options. The options are the same as for the panc
command, except that the java options parameter is not supported.

Maven
The pan compiler release contains a simple maven plug-in that will perform a pan
syntax check and build a simple set of files. The plug-in is available from the central
maven repository. To use this, you will need to configure maven for that repository.
A maven archetype is also provided that can be used to generate a working skeleton
that demonstrates the pan maven plugin.

Warning

The options of the plug-in have changed from the previous version. They
mirror those of the panc script. Details for the options are given below.

To generate a skeleton maven project from the archetype use the following
command (use the latest version of the archetype):

$ mvn archetype:generate \
 -DarchetypeArtifactId=panc-maven-archetype \
 -DarchetypeGroupId=org.quattor.pan \
 -DarchetypeVersion=9.3

...

Define value for property 'groupId': : org.example.pan
Define value for property 'artifactId': : mysite
Define value for property 'version': 1.0-SNAPSHOT: :
Define value for property 'package': org.example.pan: :
Confirm properties configuration:
groupId: org.example.pan
artifactId: mysite
version: 1.0-SNAPSHOT
package: org.example.pan
 Y: :

...

[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 19.690s
[INFO] Finished at: Mon Feb 20 08:23:52 CET 2012
[INFO] Final Memory: 9M/81M
[INFO] --

Running the Compiler | 66

As can be seen above, the process will ask for general information about the project
that you want to create. The process should end with a "BUILD SUCCESS" and
create a subdirectory with the maven project. In the example, the subdirectory (and
artifactId) are named "mysite".

Within this subdirectory ("mysite"), you can then invoke the entire build process
by doing the following:

$ cd mysite/
$ mvn clean install

...

[INFO] --- panc-maven-plugin:9.2-SNAPSHOT:pan-check-syntax (check-syntax) @ mysite ---
[INFO]
[INFO] --- panc-maven-plugin:9.2-SNAPSHOT:pan-build (build) @ mysite ---

...

[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 1.782s
[INFO] Finished at: Mon Feb 20 08:27:51 CET 2012
[INFO] Final Memory: 3M/81M
[INFO] --

Again, this should end with a "BUILD SUCCESS". It will have generated the
machine profile in the target/profiles/node.example.org.xml file:

$ cat target/profiles/node.example.org.xml

<?xml version="1.0" encoding="UTF-8"?>
<nlist format="pan" name="profile">
 <list name="alpha">
 <long>1</long>
 <long>2</long>
 <long>3</long>
 <long>4</long>
 </list>
 <nlist name="beta">
 <string name="delta">OK</string>
 <boolean name="epsilon">true</boolean>
 <string name="gamma">OK</string>
 <double name="zeta">3.14</double>
 </nlist>
</nlist>

The pom.xml file in the skeleton provides a good example on how to run the plug-
in. You can also obtain more detailed help via the maven help system:

$ mvn help:describe -Dplugin=panc -Ddetail=true

The following tables show the available parameters for the PanBuild and
PanCheckSyntax mojos.

Table B.1. PanBuild Mojo Parameters

sourceDirectory Location of pan language
sources.

No. Default value:
'${basedir}/src/main/pan'

Running the Compiler | 67

profiles Name of the profiles
subdirectory inside of the
sourceDirectory. Used to
find the object profiles to
build.

No. Default value:
'profiles'

verbose Whether to include
a summary of the
compilation, including
number of profiles
compiled and overall
memory utilization.

No. Default value: false

warnings Sets whether warnings are
printed and whether they
are treated as fatal errors.
Allowed values are 'on',
'off', and 'fatal'.

No. Default value: 'on'

debugNsInclude Pattern to apply to
template namespace to
determine whether to
activate debugging output.

No. Default value: '^$'

debugNsExclude Pattern to apply to
template namespace to
determine whether to
exclude debugging output.

No. Default value: '.+'

initialData A compile-time
expression that evaluates
to an nlist. This nlist is
used as the root nlist
for all compiled object
templates. A convenient
mechanism for injecting
build numbers and other
metadata into the profiles.

No. Default value: null
(empty nlist)

outputDir The directory that will
contain the output of the
compilation.

Yes.

formats A comma-separated list of
output formats to use. The
accepted values are: "pan",
"pan.gz", "xml", "xml.gz",
"json", "json.gz", "txt",
"dep" and "dot".

No. Default value:
'pan,dep'

Running the Compiler | 68

maxIteration Set the maximum number
of iterations. This is a
failsafe to avoid infinite
loops.

No. Default value: 10000

maxRecursion Maximum number of
recursive calls.

No. Default value: 50

logging Enable different types
of logging. The possible
values are: "all", "none",
"include", "call", "task",
and "memory". Multiple
values may be included
as a comma-separated list.
The value "none" will
override any other setting.

No.

logFile The name of the file to use
for logging information.
This value must be defined
in order to enable logging.

Yes, if logging attribute is
used.

Table B.2. PanCheckSyntax Mojo Parameters

sourceDirectory Location of pan language
sources.

No. Default value:
'${basedir}/src/main/pan'

verbose Whether to include
a summary of the
compilation, including
number of profiles
compiled and overall
memory utilization.

No. Default value: false

warnings Sets whether warnings are
printed and whether they
are treated as fatal errors.
Allowed values are 'on',
'off', and 'fatal'.

No. Default value: 'on'

Ant
Using an ant task to invoke the compiler allows the compiler to be easily integrated
with other machine management tasks. To use the pan compiler within an ant build
file, the pan compiler tasks must be defined. This can be done with a task definition
element like:

<target name="define.panc.task">

Running the Compiler | 69

 <taskdef resource="org/quattor/ant/panc-ant.xml">
 <classpath>
 <pathelement path="${panc.jar}" />
 </classpath>
 </taskdef>

</target>

where the property ${panc.jar} points to the jar file panc.jar distributed with
the pan compiler release.

There are two tasks defined: panc and panc-check-syntax. The first provides all of
the functionality available through the compiler with a large number of options. The
second focuses on testing the pan language syntax and takes a very limited number
of options. Running the compiler can be done with tasks like the following:

<target name="compile.cluster.profiles">

 <!-- Define the load path. By default this is just the cluster area. -->
 <path id="pan.loadpath">
 <dirset dir="${basedir}" includes="**/*" />
 </path>

 <panc-check-syntax ...options... >
 <fileset dir="${basedir}/profiles" casesensitive="yes" includes="*.pan" />
 </panc-check-syntax>

 <panc ...options... >
 <path refid="pan.loadpath" />
 <fileset dir="${basedir}/profiles" casesensitive="yes" includes="*.pan" />
 </panc>

</target>

where ...options... is replaced with valid options for the pan compiler ant
tasks.

The ant task supports the attributes in the following table. Only the warnings and
verbose attributes are permitted for the panc-check-syntax task.

Table B.3. Ant Task Attributes

debugNsInclude Pattern to apply to
template namespace to
determine whether to
activate debugging output.

No. Default value: '^$'

debugNsExclude Pattern to apply to
template namespace to
determine whether to
exclude debugging output.

No. Default value: '.+'

initialData A compile-time
expression that evaluates
to an nlist. This nlist is
used as the root nlist

No. Default value: null
(empty nlist)

Running the Compiler | 70

for all compiled object
templates. A convenient
mechanism for injecting
build numbers and other
metadata into the profiles.

includeRoot Directory to use as the root
of the compilation.

Yes.

includes Set of directories below
the include root to use in
the compilation. This is a
"glob".

Yes.

outputDir The directory that will
contain the output of the
compilation.

Yes.

formats A comma-separated list of
output formats to use. The
accepted values are: "pan",
"pan.gz", "xml", "xml.gz",
"json", "json.gz", "txt",
"dep" and "dot".

No. Default value:
'pan,dep'

maxIteration Set the maximum number
of iterations. This is a
failsafe to avoid infinite
loops.

No. Default value: 10000

maxRecursion Maximum number of
recursive calls.

No. Default value: 50

logging Enable different types
of logging. The possible
values are: "all", "none",
"include", "call", "task",
and "memory". Multiple
values may be included
as a comma-separated list.
The value "none" will
override any other setting.

No.

logFile The name of the file to use
for logging information.
This value must be defined
in order to enable logging.

Yes, if logging attribute is
used.

warnings Sets whether warnings are
printed and whether they
are treated as fatal errors.

No. Default value: 'on'

Running the Compiler | 71

Allowed values are 'on',
'off', and 'fatal'.

verbose Whether to include
a summary of the
compilation, including
number of profiles
compiled and overall
memory utilization.

No. Default value: false

checkDependencies Whether or not to check
dependencies and only
build profiles that have not
changed.

No. Default value: true

debugTask Emit debugging messages
for the ant task itself. If
the value is 1, then normal
debugging is turned on; if
the value is greater than
1 then verbose debugging
is turned on. A value of
zero turns off the task
debugging.

No. Default value: 0

ignoreDependencyPattern A pattern which will
select dependencies to
ignore during the task's
dependency calculation.
The pattern will be
matched against the
namespaced template
name.

No. Default value: null

batchSize If set to a positive integer,
the outdated templates will
be processed in batches of
batchSize.

No. Default value: 0

Nested Elements

Some of the configuration options are specified via nested elements. The panc
task supports all of these; the panc-check-syntax task only supports the fileset
nested element.

Running the Compiler | 72

Fileset

Nested fileset elements specify the list of files to process with the compiler.
These are standard ant element and take all of the usual attributes.

Path

A nested path element specifies the list of include directories to use during the
compilation. This is a standard ant element and takes all of the usual attributes.

Setting JVM Parameters

If the compiler is invoked via the pan compiler ant task, then the memory option
can be added with the ANT_OPTS environmental variable.

export ANT_OPTS="-Xmx1024M"

or

setenv ANT_OPTS "-Xmx1024M"

depending on whether you use a c-shell or a bourne shell. Other options can be
similarly added to the environmental variable. (The value is a space-separated list.)

Invocation Inside Eclipse
If you use the default VM to run the pan compiler ant task, then you will need to
increase the memory when starting eclipse. From the command line you can add
the VM arguments like:

eclipse -vmargs -Xmx<memory size>

You may also need to increase the memory in the "permanent" generation for a Sun
VM with

eclipse -vmargs -XX:MaxPermSize=<memory size>

This will increase the memory available to eclipse and to all tasks using the default
virtual machine. For Max OS X, you will have to edit the application "ini" file. See
the eclipse instructions for how to do this.

If you invoke a new Java virtual machine for each build, then you can change the
ant arguments via the run parameters. From within the "ant" view, right-click on the
appropriate ant build file, and then select "Run As -> Ant Build...". In the pop-up
window, select the JRE tab. In the "VM arguments" panel, add the -Xmx option.
The next build will use these options. Other VM options can be changed in the same
way.

Running the Compiler | 73

The options can also be set using the "Window -> Preferences -> Java -> Installed
JREs" panel. Select the JRE you want use, click edit and add the additional
parameters in the "DefaultVM arguments" field.

Command Reference | 74

APPENDIX C

Command Reference

The pan distributions provide a set of commands that allow the compiler to be
invoked and that demonstrate how to analyze available logging information. These
commands are provided for ease of use for one-off tasks. The compiler can be more
efficiently invoked via Apache Ant or Maven for automated use of the compiler in
production.

Command Reference | 75

Name
panc — compile pan language templates

Synopsis

panc [--no-debug | --debug] [--debug-ns-include regex] [--debug-ns-exclude
regex] [--initial-data nlist-dml] [--include-path path] [--output-dir dir] [--
formats formats] [--java-opts java-options] [--max-iteration limit] [--
max-recursion limit] [--logging string] [--log-file file] [--warnings flag]
[-v | --no-verbose | --verbose] [-h | --no-help | --help] [template...]

Description

The panc command will compile a collection of pan language templates into a set
of machine configuration files. This command, with its reorganized and simplified
options, replaces the older panc command.

--no-debug, --debug Enable or disable all debugging. By default,
debugging is turned off.

--debug-ns-include=regex Define a pattern to selectively enable the pan
debug and traceback functions. Those
functions will be enabled for templates
where the template name matches one of
the include regular expressions and does not
match an exclude regular expression. This
option may appear multiple times.

--debug-ns-exclude=regex Define a pattern to selectively disable the
pan debug and traceback functions.
Those functions will be disabled for
templates where the template name matches
one of the exclude regular expressions. This
option may appear multiple times. Exclusion
takes precedence over inclusion.

--initial-data=nlist-dml A DML expression that evaluates to an nlist.
This value will be used as the starting nlist
for all object templates. This is a convenient
mechanism for injecting build numbers and
other metadata in the profiles.

--include-path=path Defines the source directories to search
when looking for templates. The value must
be a list of absolute directories delimited by

Command Reference | 76

the platform's path separator. If this is not
specified, the current working directory is
used.

--output-dir=dir Set where the machine configuration files
will be written. If this option is not specified,
then the current working directory is used by
default.

--formats=formats A comma separated list of desired output
formats. Allowed values are "pan", "pan.gz",
"xml", "xml.gz", "json", "json.gz", "txt",
"dep" and "dot". The default is value is
"pan,dep".

--java-opts=string List of options to use when starting the
java virtual machine. These are passed
directly to the java command and must be
valid. Multiple options can be specified by
separating them with a space. When using
multiple options, the full value must be
enclosed in quotes.

--max-iteration=limit Set the limit on the maximum number of
permitted loop iterations. This is used to
avoid infinite loops. The default value is
5000.

--max-recursion=limit Set the limit on the maximum number of
permitted recursions. The default value is
10.

--logging=string Enable compiler logging; possible values
are "all", "none", "include", "call", "task",
and "memory". A log file must be specified
with the --log-file option to capture the
logging information.

--log-file=file Set the name of the file to use to store
logging information.

--warnings=flag Possible values are "on", "off", and "fatal".
The last value will turn all warnings into
fatal errors.

-v, --no-verbose, --
verbose

At the end of a compilation, print run
statistics including the numbers of files

Command Reference | 77

processed, total time, and memory used. The
default is not to print these values.

-h, --no-help, --help Print a short summary of command usage if
requested. No other processing is done if this
option is given.

The panc command is just a wrapper script around the java command to simplify
setting various options. The typical case is that the command is invoked without
options and just a list of object templates as the arguments. Larger sets of templates
will need to set the memory option for the Java Virtual Machine; this should be
done through the --java-opts option.

Command Reference | 78

Name
panc-annotations — process annotations in pan configuration files

Synopsis

panc-annotations [--base-dir base-directory] [--output-dir dir] [--
java-opts jvm-options] [-v | --no-verbose | --verbose] [-h | --no-help | --help]
[template...]

Description

The panc-annotations command will process the annotations contains within pan
configuration files within the given base directory.

--base-dir=base-
directory

Defines a base directory containing all pan
configuration files to process. The default is
value is the current working directory.

--output-dir=dir Set where the annotation files will be
written. If this option is not specified, then
the current working directory is used by
default.

--java-opts=string List of options to use when starting the
java virtual machine. These are passed
directly to the java command and must be
valid. Multiple options can be specified by
separating them with a space. When using
multiple options, the full value must be
enclosed in quotes.

-v, --no-verbose, --
verbose

At the end of a compilation, print run
statistics including the numbers of files
processed, total time, and memory used. The
default is not to print these values.

-h, --no-help, --help Print a short summary of command usage if
requested. No other processing is done if this
option is given.

The panc-annotations command is just a wrapper script around the java command
to simplify setting various options.

Command Reference | 79

Name
panc-build-stats.pl — create a report of panc build statistics

Synopsis

panc-build-stats.pl [--help] {logfile}

Description

The panc-build-stats.pl script will analyze a panc log file and report build statistics.
The script takes the name of the log file as its only argument. If no argument is
given or the --help option is used, a short usage message is printed. The log file
must have been created with "task" logging enabled.

The script will extract the time required to execute, to set default values, to validate
the configuration, to write the XML file, and to write a dependency file. It will
also report the "build" time which is the time for executing, setting defaults, and
validating an object file.

The analysis is written to the standard output, but may be saved in a file using
standard IO stream redirection. The format of the file is appropriate for the R
statistical analysis package, but should be trivial to import into excel or any other
analysis package.

Example

If the output from the command is written to the file build.txt, then the
following R script will do a simple analysis of the results. This will provide
statistical results on the various build phases and show histograms of the
distributions.

R-script for simple analysis of build report
bstats <- read.table("build.txt")
attach(bstats)
summary(bstats)
hist(build, nclass=20)
hist(execute, nclass=20)
hist(execute, nclass=20)
hist(defaults, nclass=20)
hist(validation, nclass=20)
hist(xml, nclass=20)
hist(dep, nclass=20)
detach(bstats)

Command Reference | 80

Name
panc-call-tree.pl — create a graph of pan call tree

Synopsis

panc-call-tree.pl [--help] [--format=dot|hg] {logfile}

Description

The panc-call-tree.pl script will analyze a panc log file and create a graph of the
pan call tree. One output file will be created for each object template. The script
takes the name of the log file as its only argument. If no argument is given or the
--help option is used, a short usage message is printed. The log file must have
been created with "call" logging enabled.

The graphs are written in either "dot" or "hypergraph" format. Graphviz [http://
www.graphviz.org/] can be used to visualize graphs written in dot format.
Hypergraph [http://hypergraph.sourceforge.net/] can be used to visualize graphs
written in hypergraph format. Note that all "includes" are shown in the graph; in
particular unique and declaration templates will appear in the graph wherever they
are referenced.

http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/
http://hypergraph.sourceforge.net/
http://hypergraph.sourceforge.net/

Command Reference | 81

Name
panc-compile-stats.pl — create a report of panc compilation statistics

Synopsis

panc-compile-stats.pl [--help] {logfile}

Description

The panc-compile-stats.pl script will analyze a panc log file and report compilation
statistics. The script takes the name of the log file as its only argument. If no
argument is given or the --help option is used, a short usage message is printed.
The log file must have been created with "task" logging enabled.

The script will extract the start time of each compilation and its duration. This
compilation is the time to parse a template file and create the internal representation
of the template. The analysis is written to the standard output, but may be saved in
a file using standard IO stream redirection. The format of the file is appropriate for
the R statistical analysis package, but should be trivial to import into excel or any
other analysis package.

Example

If the output from the command is written to the file compile.txt, then the
following R script will create a "high-density" plot of the information. This graph
shows a vertical line for each compilation, where the horizontal location is related
to the start time and the height of the line the duration.

R-script for simple analysis of compile report
cstats <- read.table("compile.txt")
attach(cstats)
plot(start/1000, duration, type="h", xlab="time (s)", ylab="duration (ms)")
detach(cstats)

Command Reference | 82

Name
panc-memory.pl — create a report of panc memory utilization

Synopsis

panc-memory.pl [--help] {logfile}

Description

The panc-memory.pl script will analyze a panc log file and report on the memory
usage. The script takes the name of the log file as its only argument. If no argument
is given or the --help option is used, a short usage message is printed. The log
file must have been created with "memory" logging enabled.

The script will extract the heap memory usage of the compiler as a function of time.
The memory use is reported in megabytes and the times are in milliseconds. Usually
one will want to use this information in conjunction with the thread information
to understand the memory use as it relates to general compiler activity. Note that
java uses sophisticated memory management and garbage collection techniques;
fluctuations in memory usage may not be directly related to the compiler activity
at any instant in time.

Example

If the output from the command is written to the file memory.txt, then the
following R script will create a plot of the memory utilization as a function of time.

R-script for simple analysis of memory report
mstats <- read.table("memory.txt")
attach(mstats)
plot(time/1000, memory, xlab="time (s)", ylab="memory (MB)", type="l")
detach(mstats)

Command Reference | 83

Name
panc-profiling.pl — generate profiling information from panc log file

Synopsis

panc-profiling.pl [--help] [--usefunctions] {logfile}

Description

The panc-profiling.pl script will analyze a panc log file and report profiling
information. The script takes the name of the log file as its first argument. The
second argument determines if function call information will be included (flag=1) or
not (flag=0). By default, the function call information is not included. If no argument
is given or the --help option is used, a short usage message is printed. The log
file must have been created with "call" logging enabled.

Two files are created for each object template: one with 'top-down' profile
information and the other with 'bottom-up' information.

The top-down file contains a text representation of the call tree with each entry
giving the total time spent in that template and any templates called from that
template. At each level, one can use this to understand the relative time spent in a
node and each direct descendant.

The bottom-up file provides how much time is spent directly in each template (or
function), ignoring any time spent in templates called from it. This allows one to
see how much time is spent in each template regardless of how the template (or
function) was called.

All of the timing information is the "wall-clock" time, so other activity on the
machine and the logging itself can influence the output. Nonetheless, the profiling
information should be adequate to understand inefficient parts of a particular build.

Command Reference | 84

Name
panc-threads.pl — create a report of thread activity

Synopsis

panc-threads.pl [--help] {logfile}

Description

The panc-threads.pl script will analyze a panc log file and report on build activity
per thread. The script takes the name of the log file as its only argument. If no
argument is given or the --help option is used, a short usage message is printed.
The log file must have been created with "task" logging enabled.

The script will give the start time of build activity on any particular thread and
the ending time. This can be used to understand the build and thread activity in a
particular compilation. The times are given in milliseconds relative to the first entry
in the log file.

Example

If the output from the command is written to the file thread.txt, then the
following R script will create a plot showing the duration of the activity on each
thread.

R-script for simple analysis of thread report
tstats <- read.table("threads.txt")
attach(tstats)
plot(stop/1000,thread, type="n", xlab="time (s)", ylab="thread ID")
segments(start/1000, thread, stop/1000, thread)
detach(tstats)

Built-In Function Reference | 85

APPENDIX D

Built-In Function Reference

Pan provides a large (and growing) number of built-in functions. These are treated
as operators by the pan compiler implementation and are thus highly optimized.
Consequently, they should be preferred to writing your own user-defined functions
when possible. Because they are built into the compiler, the argument processing
is different than that for user-defined functions. In particular, some arguments may
be evaluated only when necessary and null can be a valid function argument.

Built-In Function Reference | 86

Name
panc:append — adds a value to the end of a list

Synopsis

list append(value);

element value;

list append(target, value);

list target;
element value;

list append(target, value);

variable_reference target;
element value;

Description

The append function will add the given value to the end of the target list. There
are three variants of this function. For all of the variants, an explicit null value is
illegal and will terminate the compilation with an error.

The first variant takes a single argument and always operates on SELF. It will
directly modify the value of SELF and give the modified list (SELF) as the return
value. If SELF does not exist, is undef, or is null, then an empty list will be
created and the given value appended to that list. If SELF exists but is not a list, an
error will terminate the compilation. This variant cannot be used to create a compile-
time constant.

/result will have the values 1 and 2 in that order
'/result' = list(1);
'/result' = append(2);

The second variant takes two arguments. The first argument is a list value, either a
literal list value or a list calculated from a DML block. This version will create a
copy of the given list and append the given value to the copy. The modified copy is
returned. If the target is not a list, then an error will terminate the compilation. This
variant can be used to create a compile-time constant as long as the target expression
does not reference information outside of the DML block by using, for example,
the value function.

/result will have the values 1 and 2 in that order
/x will only have the value 1
'/x' = list(1);
'/result' = append(value('/x'), 2);

Built-In Function Reference | 87

The third variant also takes two arguments, where the first value is a variable
reference. This variant will take precedence over the second variant. This variant
will directly modify the referenced variable and return the modified list. If the
referenced variable does not exist, it will be created. As for the other forms, if the
referenced target exists and is not a list, then an error will terminate the compilation.
SELF or descendants of SELF can be used as the target. This variant can be used to
create a compile-time constant if the referenced variable is an existing local variable.
Referencing a global variable (except via SELF) is not permitted as modifying
global variables from within a DML block is forbidden.

/result will have the values 1 and 2 in that order
'/result' = {
 append(x, 1); # will create local variable x
 append(x, 2);
};

Built-In Function Reference | 88

Name
panc:base64_decode — decodes a string that has been encoded in base64 format

Synopsis

string base64_decode(encoded);

string encoded;

Description

The base64_decode function will return the unencoded value of the base64
(RFC 2045) encoded argument. If the argument is not a valid base64 encoded value
a fatal error will occur.

/result have the string value 'hello world'
'/result' = base64_decode('aGVsbG8gd29ybGQ=');

Built-In Function Reference | 89

Name
panc:base64_encode — encodes a string in base64 format

Synopsis

string base64_encode(unencoded);

string unencoded;

Description

The base64_encode function will return the base64 (RFC 2045) encoded format
of the argument.

/result have the string value 'aGVsbG8gd29ybGQ='
'/result' = base64_encode('hello world');

Built-In Function Reference | 90

Name
panc:clone — returns a clone (copy) of the argument

Synopsis

element clone(arg);

element arg;

Description

The clone function may return a clone (copy) of the argument. If the argument is a
resource, the result will be a "deep" copy of the argument; subsequent changes to the
argument will not affect the clone and vice versa. Because properties are immutable
internally, this function will not actually copy a property instead returning the
argument itself.

Built-In Function Reference | 91

Name
panc:create — create an nlist from a structure template

Synopsis

nlist create(tpl_name,);

string tpl_name;
...;

Description

The create function will return an nlist from the named structure template. The
optional additional arguments are key, value pairs that will be added to the returned
nlist, perhaps overwriting values from the structure template. The keys must be
strings that contain valid nlist keys (see Path Literals Section). The values can be
any element. Null values will delete the given key from the resulting nlist.

description of CD mount entry with the device undefined
(in file 'mount_cdrom.pan')
structure template mount_cdrom;
'device' = undef;
'path' = '/mnt/cdrom';
'type' = 'iso9660';
'options' = list('noauto', 'owner', 'ro');

use from within another template
'/system/mounts/0' = create('mount_cdrom', 'device', 'hdc');

the above is equivalent to the following two lines
'/system/mounts/0' = create('mount_cdrom');
'/system/mounts/0/device' = 'hdc';

Built-In Function Reference | 92

Name
panc:debug — print debugging information to the console

Synopsis

string debug(msg);

string msg;

Description

This function will print the given string to the console (on stdout) and return the
message as the result. This functionality must be activated either from the command
line or via a compiler option (see compiler manual for details). If this is not activated,
the function will not evaluate the argument and will return undef.

Built-In Function Reference | 93

Name
panc:delete — delete the element identified by the variable expression

Synopsis

undef delete(arg);

variable_expression arg;

Description

This function will delete the element identified by the variable expression given
in the argument and return undef. The variable expression can be a simple or
subscripted variable reference (e.g. x, x[0], x['abc'][1], etc.). Only variables local
to a DML block can be modified with this function. Attempts to modify a global
variable will cause a fatal error. For subscripted variable references, this function
has the same effect as assigning the variable reference to null.

/result will contain the list ('a', 'c')
'/result' = {
 x = list('a', 'b', 'c');
 delete(x[1]);
 x;
};

Built-In Function Reference | 94

Name
panc:deprecated — print deprecation warning to console

Synopsis

string deprecated(level, msg);

long level;
string msg;

Description

This function will print the given string to the console (on stderr) and return the
message as the result, if level is less than or equal to the deprecation level given
as a compiler option. If the message is not printed, the function returns undef. The
value of level must be non-negative.

Built-In Function Reference | 95

Name
panc:digest — creates a digest of a message using the specified algorithm

Synopsis

string digest(algorithm, message);

string algorithm;
string message;

Description

This function returns a digest of the message using the specified algorithm.
The valid algorithms are: MD2, MD5, SHA, SHA-1, SHA-256, SHA-384, and
SHA-512. The algorithm name is not case sensitive.

Built-In Function Reference | 96

Name
panc:error — print message to console and abort compilation

Synopsis

void error(msg);

string msg;

Description

This function prints the given message to the console (stderr) and aborts the
compilation. This function cannot appear neither in variable subscripts nor in
function arguments; a fatal error will occur if found in either place.

a user-defined function requiring one argument
function foo = {

 if (ARGC != 1) {
 error("foo(): wrong number of arguments: " + to_string(ARGC));
 };

 # normal processing...
};

Built-In Function Reference | 97

Name
panc:escape — escape non-alphanumeric characters to allow use as nlist key

Synopsis

string escape(str);

string str;

Description

This function escapes non-alphanumeric characters in the argument so that it can
be used inside paths, for instance as an nlist key. Non-alphanumeric characters are
replaced by an underscore followed by the hex value of the character. If the string
begins with a digit, the initial digit is also escaped. If the argument is the empty
string, the returned value is a single underscore '_'.

/result will have the value '1_2b1'
'/result' = escape('1+1');

Built-In Function Reference | 98

Name
panc:exists — determines if a variable expression, path, or template exists

Synopsis

boolean exists(var);

variable_expression var;

boolean exists(path);

string path;

boolean exists(tpl);

string tpl;

Description

This function will return a boolean indicating whether a variable expression, path, or
template exists. If the argument is a variable expression (with or without subscripts)
then this function will return true if the given variable exists; the value of referenced
variable is not used. If the argument is not a variable reference, the argument is
evaluated; the value must be a string. If the resulting string is a valid external or
absolute path, the path is checked. Otherwise, the string is interpreted as a template
name and the existence of this template is checked.

Note that if the argument is a variable expression, only the existence of the variable
is checked. For example, the following code will always leave r with a value of
true.

v = '/some/absolute/path';
r = exists(v);

If you want to test the path, remove the ambiguity by using a construct like the
following:

v = '/some/absolute/path';
r = exists(v+'');

The value of r in this case will be true if /some/absolute/path exists or
false otherwise.

Built-In Function Reference | 99

Name
panc:file_contents — provide contents of file as a string

Synopsis

string file_contents(filename);

string filename;

Description

This function will return a string containing the contents of the named file. The file
is located using the standard source file lookup algorithm. Because the load path is
used to find the file, this function may not be used to create a compile-time constant.
If the file cannot be found, an error will be raised.

Built-In Function Reference | 100

Name
panc:first — initialize an iterator over a resource and return first entry

Synopsis

boolean first(r, key, value);

resource r;
variable_expression key;
variable_expression value;

Description

This function resets the iterator associated with r so that it points to the beginning
of the resource. It will return false if the resource is empty; true, otherwise. If
the resource is not empty, then it will also set the variable identified by key to the
child's index and the variable identified by value to the child's value. Either key
or value may be undef, in which case no assignment is made. For a list resource
key is the child's numeric index; for an nlist resource, the string value of the key
itself. An example of using first with a list:

compute the sum of the elements inside numlist
numlist = list(1, 2, 4, 8);
sum = 0;
ok = first(numlist, k, v);
while (ok) {
 sum = sum + v;
 ok = next(numlist, k, v);
};
value of sum will be 15

An example of using first with an nlist:

put the list of all the keys of table inside keys
table = nlist("a", 1, "b", 2, "c", 3);
keys = list();
ok = first(table, k, v);
 while (ok) {
 keys[length(keys)] = k;
 ok = next(table, k, v);
};
keys will be ("a", "b", "c")

Built-In Function Reference | 101

Name
panc:format — format a string by replacing references to parameters

Synopsis

string format(fmt, param,);

string fmt;
property param;
...;

Description

The format function will replace all references within the fmt string with the
values of the referenced properties. This provides functionality similar to the c-
language's printf function. The syntax of the fmt string follows that provided
in the java language; see the Formatter entry for full details.

Built-In Function Reference | 102

Name
panc:if_exists — check if a template exists, returning template name if it does

Synopsis

string|undef if_exists(tpl);

string tpl;

Description

The if_exists function checks if the named template exists on the current load
path. If it does, the function returns the name of the template. If it does not, undef
is returned. This can be used to conditionally include a template:

include {if_exists('my/conditional/template')};

This function should be used with caution as this brings in dependencies based on
the state of the file system and may cause dependency checking to be inaccurate.

Built-In Function Reference | 103

Name
panc:index — finds substring within a string or element within a resource

Synopsis

long index(sub, arg, start);

string sub;
string arg;
long start;

long index(sub, list, start);

property sub;
string list;
long start;

string index(sub, arg, start);

property sub;
nlist arg;
long start;

long index(sub, arg, start);

nlist sub;
list arg;
long start;

string index(sub, arg, start);

nlist sub;
nlist arg;
long start;

Description

The index function returns the location of a substring within a string or an element
within a resource. In detail the five different forms perform the following actions.

The first form searches for the given substring inside the given string and returns its
position from the beginning of the string or -1 if not found; if the third argument
is given, starts initially from that position.

'/s1' = index('foo', 'abcfoodefoobar'); # 3
'/s2' = index('f0o', 'abcfoodefoobar'); # -1
'/s3' = index('foo', 'abcfoodefoobar', 4); # 8

Built-In Function Reference | 104

The second form searches for the given property inside the given list of properties
and returns its position or -1 if not found; if the third argument is given, starts
initially from that position; it is an error if sub and arg’s children are not of the
same type.

search in a list of strings (result = 2)
"/l1" = index("foo", list("Foo", "FOO", "foo", "bar"));

search in a list of longs (result = 3)
"/l2" = index(1, list(3, 1, 4, 1, 6), 2);

The third form searches for the given property inside the given named list of
properties and returns its name or the empty string if not found; if the third argument
is given, skips that many matching children; it is an error if sub and arg’s children
are not of the same type.

simple color table
'/table' = nlist('red', 0xf00, 'green', 0x0f0, 'blue', 0x00f);

result will be the string 'green'
'/name1' = index(0x0f0, value('/table'));

result will be the empty string
'/name2' = index(0x0f0, value('/table'), 1);

The fourth form searches for the given nlist inside the given list of nlists and returns
its position or -1 if not found. The comparison is done by comparing all the children
of sub, these children must all be properties. If the third argument is given, starts
initially from that position. It is an error if sub and arg’s children are not of the
same type or if their common children don’t have the same type.

search a record in a list of records (result = 1, the second nlist)
'/ll1' = index(
 nlist('key', 'foo'),
 list(
 nlist('key', 'bar', 'val', 101),
 nlist('key', 'foo')
)
);

search a record in a list of records starting at index (result = 1, the second nlist)
'/ll2' = index(
 nlist('key', 'foo'),
 list(
 nlist('key', 'bar', 'val', 101),
 nlist('key', 'foo'),
 nlist('key', 'bar', 'val', 101),
 nlist('key', 'foo'),
 nlist('key', 'bar', 'val', 101),
 nlist('key', 'foo')
),
 1
);

The last form searches for the given nlist inside the given nlist of nlists and returns
its name or the empty string if not found. If the third argument is given, the function
skips that many matching children. It is an error if sub and arg’s children are not
of the same type or if their common children don’t have the same type.

search for matching nlist (result = 'b')

Built-In Function Reference | 105

'/nn1' = index(
 nlist('key', 'foo'),
 nlist(
 'a', nlist('key', 'bar', 'val', 101),
 'b', nlist('key', 'foo')
)
);

skip first match and return index of second match (result='d')
'/nn2' = index(
 nlist('key', 'foo'),
 nlist(
 'a', nlist('key', 'bar', 'val', 101),
 'b', nlist('key', 'foo'),
 'c', nlist('key', 'bar', 'val', 101),
 'd', nlist('key', 'foo'),
 'e', nlist('key', 'bar', 'val', 101),
 'f', nlist('key', 'foo')
),
 1
);

Built-In Function Reference | 106

Name
panc:is_boolean — checks to see if the argument is a double

Synopsis

boolean is_boolean(arg);

element arg;

Description

The is_boolean function will return true if the argument is a boolean value;
it will return false otherwise.

Built-In Function Reference | 107

Name
panc:is_defined — checks to see if the argument is anything but undef or null

Synopsis

boolean is_defined(arg);

element arg;

Description

The is_defined function will return a true value if the argument is anything
but undef or null; it will return false otherwise.

Built-In Function Reference | 108

Name
panc:is_double — checks to see if the argument is a double

Synopsis

boolean is_double(arg);

element arg;

Description

The is_double function will return true if the argument is a double value; it
will return false otherwise.

Built-In Function Reference | 109

Name
panc:is_list — checks to see if the argument is a double

Synopsis

boolean is_list(arg);

element arg;

Description

The is_list function will return true if the argument is a list; it will return
false otherwise.

Built-In Function Reference | 110

Name
panc:is_long — checks to see if the argument is a long

Synopsis

boolean is_long(arg);

element arg;

Description

The is_long function will return true if the argument is a long value; it will
return false otherwise.

Built-In Function Reference | 111

Name
panc:is_nlist — checks to see if the argument is an nlist

Synopsis

boolean is_nlist(arg);

element arg;

Description

The is_nlist function will return true if the argument is an nlist; it will return
false otherwise.

Built-In Function Reference | 112

Name
panc:is_null — checks to see if the argument is null

Synopsis

boolean is_null(arg);

element arg;

Description

The is_null function will return a true value if the argument is null; it will
return false otherwise.

Built-In Function Reference | 113

Name
panc:is_number — checks to see if the argument is a number

Synopsis

boolean is_number(arg);

element arg;

Description

The is_number function will return a true value if the argument is a number
(long or double); it will return false otherwise.

Built-In Function Reference | 114

Name
panc:is_property — checks to see if the argument is a property

Synopsis

boolean is_property(arg);

element arg;

Description

The is_property function will return a true value if the argument is a property
(atomic value); it will return false otherwise.

Built-In Function Reference | 115

Name
panc:is_resource — checks to see if the argument is a resource

Synopsis

boolean is_resource(arg);

element arg;

Description

The is_resource function will return a true value if the argument is a resource
(collection); it will return false otherwise.

Built-In Function Reference | 116

Name
panc:is_string — checks to see if the argument is a string

Synopsis

boolean is_string(arg);

element arg;

Description

The is_string function will return true if the argument is a string value; it will
return false otherwise.

Built-In Function Reference | 117

Name
panc:key — returns name of child based on the index

Synopsis

string key(resource, index);

nlist resource;
long index;

Description

This function returns the name of the child identified by its index, this can be used
to iterate through all the children of an nlist. The index corresponds to the key's
position in the list of all keys, sorted in lexical order. The first index is 0.

'/table' = nlist('red', 0xf00, 'green', 0x0f0, 'blue', 0x00f);

'/keys' = {

 tbl = value('/table');
 res = '';
 len = length(tbl);
 idx = 0;
 while (idx < len) {
 res = res + key(tbl, idx) + ' ';
 idx = idx + 1;
 };

 if (length(res) > 0) splice(res, -1, 1);
 return(res);
};
/keys will be the string 'blue green red '

Built-In Function Reference | 118

Name
panc:length — returns size of a string or resource

Synopsis

long length(str);

string str;

long length(res);

resource res;

Description

Returns the size of the given string or the number of children of the given resource.

Built-In Function Reference | 119

Name
panc:list — create a new list consisting of the function arguments

Synopsis

list list(elem,);

element elem;
...;

Description

Returns a newly created list containing the function arguments.

creates an empty list
'/empty' = list();

define list of two DNS servers
'/dns' = list('137.138.16.5', '137.138.17.6');

Built-In Function Reference | 120

Name
panc:match — checks if a regular expression matches a string

Synopsis

boolean match(target, regex);

string target;
string regex;

Description

This function checks if the given string matches the regular expression.

device_t is a string that can only be "disk", "cd" or "net"
type device_t = string with match(self, ’ˆ(disk|cd|net)$’);

Built-In Function Reference | 121

Name
panc:matches — checks if a regular expression matches a string

Synopsis

string[] matches(target, regex);

string target;
string regex;

Description

This function matches the given string against the regular expression and returns
the list of captured substrings, the first one (at index 0) being the complete matched
string.

IPv4 address in dotted number notation
type ipv4 = string with {
 result = matches(self, ’ˆ(\d+)\.(\d+)\.(\d+)\.(\d+)$’);
 if (length(result) == 0)
 return("bad string");
 i = 1;
 while (i <= 4) {
 x = to_long(result[i]);
 if (x > 255) return("chunk " + to_string(i) + " too big: " + result[i]);
 i = i + 1;
 };
 return(true);
};

Built-In Function Reference | 122

Name
panc:merge — combine two resources into a single one

Synopsis

resource merge(res1, res2,);

resource res1;
resource res2;
...;

Description

This function returns the resource which combines the resources given as
arguments, all of which must be of the same type: either all lists or all nlists. If more
than one nlist has a child of the same name, an error occurs.

/z will contain the list 'a', 'b', 'c', 'd', 'e'
'/x' = list('a', 'b', 'c');
'/y' = list('d', 'e');
'/z' = merge (value('/x'), value('/y'));

Built-In Function Reference | 123

Name
panc:nlist — create an nlist from the arguments

Synopsis

nlist nlist(key, property,);

string key;
element property;
...;

Description

The nlist function returns a new nlist consisting of the passed arguments; the
arguments must be key value pairs. All of the keys must be strings and have values
that are legal path terms (see Path Literals Section).

resulting nlist associates name with long value
'/result' = nlist(
 'one', 1,
 'two', 2,
 'three', 3,
};

Built-In Function Reference | 124

Name
panc:next — increment iterator over a resource

Synopsis

boolean next(res, key, value);

resource res;
identifier key;
identifier value;

Description

This function increments the iterator associated with res so that it points to the next
child element. The key and value of the next child are stored in the named variables
key and value, either of which could be undef. The function returns true if
the child exists, or false otherwise.

Built-In Function Reference | 125

Name
panc:path_exists — determines if a path exists

Synopsis

boolean path_exists(path);

string path;

Description

This function will return a boolean indicating whether the given path exists. The
path must be an absolute or external path. This function should be used in preference
to the exists function to avoid an ambiguity in handling the argument to exists
as a path or variable reference.

Built-In Function Reference | 126

Name
panc:prepend — adds a value to the beginning of a list

Synopsis

list prepend(value);

element value;

list prepend(target, value);

list target;
element value;

list prepend(target, value);

variable_reference target;
element value;

Description

The prepend function will add the given value to the beginning of the target list.
There are three variants of this function. For all of the variants, an explicit null
value is illegal and will terminate the compilation with an error.

The first variant takes a single argument and always operates on SELF. It will
directly modify the value of SELF and give the modified list (SELF) as the return
value. If SELF does not exist, is undef, or is null, then an empty list will be
created and the given value prepended to that list. If SELF exists but is not a list, an
error will terminate the compilation. This variant cannot be used to create a compile-
time constant.

/result will have the values 2 and 1 in that order
'/result' = list(1);
'/result' = prepend(2);

The second variant takes two arguments. The first argument is a list value, either a
literal list value or a list calculated from a DML block. This version will create a
copy of the given list and prepend the given value to the copy. The modified copy is
returned. If the target is not a list, then an error will terminate the compilation. This
variant can be used to create a compile-time constant as long as the target expression
does not reference information outside of the DML block by using, for example,
the value function.

/result will have the values 2 and 1 in that order
/x will only have the value 1
'/x' = list(1);
'/result' = prepend(value('/x'), 2);

Built-In Function Reference | 127

The third variant also takes two arguments, where the first value is a variable
reference. This variant will take precedence over the second variant. This variant
will directly modify the referenced variable and return the modified list. If the
referenced variable does not exist, it will be created. As for the other forms, if the
referenced target exists and is not a list, then an error will terminate the compilation.
SELF or descendants of SELF can be used as the target. This variant can be used to
create a compile-time constant if the referenced variable is an existing local variable.
Referencing a global variable (except via SELF) is not permitted as modifying
global variables from within a DML block is forbidden.

/result will have the values 2 and 1 in that order
'/result' = {
 prepend(x, 1); # will create local variable x
 prepend(x, 2);
};

Built-In Function Reference | 128

Name
panc:replace — replace all occurrences of a regular expression

Synopsis

string replace(regex, repl, target);

string regex;
string repl;
string target;

Description

The replace function will replace all occurrences of the given regular expression
with the replacement string. The regular expression is specified using the standard
pan regular expression syntax. The replacement string may contain references to
groups identified within the regular expression. The group references are indicated
with a dollar sign ($) followed by the group number. A literal dollar sign can be
obtained by preceding it with a backslash.

Built-In Function Reference | 129

Name
panc:return — exit DML block with given value

Synopsis

element return(value);

element value;

Description

This function interrupts the processing of the current DML block and returns from
it with the given value. This is often used in user-defined functions.

function facto = {
 if (ARGV[0] < 2) return(1);
 return(ARGV[0] * facto(ARGV[0] - 1));
};

Built-In Function Reference | 130

Name
panc:splice — insert string or list into another

Synopsis

string splice(str, start, length, repl);

string str;
long start;
long length;
string repl;

list splice(list, start, length, repl);

list list;
long start;
long length;
list repl;

Description

The first form of this function deletes the substring identified by start and
length and, if a fourth argument is given, inserts repl.

'/s1' = splice('abcde', 2, 0, '12'); # ab12cde
'/s2' = splice('abcde', -2, 1); # abce
'/s3' = splice('abcde', 2, 2, 'XXX'); # abXXXe

The second form of this function deletes the children of the given list identified
by start and length and, if a fourth argument is given, replaces them with the
contents of repl.

will be the list 'a', 'b', 1, 2, 'c', 'd', 'e'
'/l1' = splice(list('a','b','c','d','e'), 2, 0, list(1,2));

will be the list 'a', 'b', 'c', 'e'
'/l2' = splice(list('a','b','c','d','e'), -2, 1);

will be the list 'a', 'b', 'XXX', 'e'
'/l3' = splice(list('a','b','c','d','e'), 2, 2, list('XXX'));

Important

This function will not modify the arguments directly. Instead a copy of the
input string or list is created, modified, and returned by the function. If you
ignore the return value, then the function call will have no effect.

Built-In Function Reference | 131

Name
panc:split — split a string using a regular expression

Synopsis

string[] split(regex, target);

string regex;
string target;

string[] split(regex, limit, target);

string regex;
long limit;
string target;

Description

The split function will split the target string around matches of the given
regular expression. The regular expression is specified using the standard pan
regular expression syntax. If the limit parameter is not specified, a default value
of 0 is used. If the limit parameter is negative, then the function will match all
occurrences of the regular expression and return the result. A value of 0 will do
the same, except that empty strings at the end of the sequence will be removed. A
positive value will return an array with at most limit entries. That is, the regular
expression will be matched at most limit-1 times; the unmatched part of the string
will be returned in the last element of the list.

Built-In Function Reference | 132

Name
panc:substr — extract a substring from a string

Synopsis

string substr(target, start);

string target;
long start;

string substr(target, start, length);

string target;
long start;
long length;

Description

This function returns the part of the given string characterised by its start position
(starting from 0) and its length. If length is omitted, returns everything to the
end of the string. If start is negative, starts that far from the end of the string; if
length is negative, leaves that many characters off the end of the string.

"/s1" = substr("abcdef", 2); # cdef
"/s2" = substr("abcdef", 1, 1); # b
"/s3" = substr("abcdef", 1, -1); # bcde
"/s4" = substr("abcdef", -4); # cdef
"/s5" = substr("abcdef", -4, 1); # c
"/s6" = substr("abcdef", -4, -1); # cde

Built-In Function Reference | 133

Name
panc:to_boolean — convert argument to a boolean value

Synopsis

boolean to_boolean(prop);

property prop;

Description

This function converts the given property into a boolean value. The numeric values
0 and 0.0 are considered false; other numbers, true. The empty string and the
string "false" (ignoring case) will return false; all other strings will return true.
The function will not accept resources.

Built-In Function Reference | 134

Name
panc:to_double — convert argument to a double value

Synopsis

double to_double(prop);

property prop;

Description

This function converts the given property into a double.

If the argument is a string, then the string will be parsed to determine the double
value. Any valid literal double syntax can be used. Strings that do not represent a
valid double value will cause a fatal error.

If the argument is a boolean, then the function will return 0.0 or 1.0 depending
on whether the boolean value is false or true, respectively.

If the argument is a long, then the corresponding double value will be returned.

If the argument is a double, then the value is returned directly.

Built-In Function Reference | 135

Name
panc:to_long — convert argument to a long value

Synopsis

long to_long(prop);

property prop;

Description

This function converts the given property into a long value.

If the argument is a string, then the string will be parsed to determine the long value.
The string may represent a long value as an octal, decimal, or hexadecimal value.
The syntax is exactly the same as for specifying literal long values. String values
that cannot be parsed as a long value will result in an error.

If the argument is a boolean, then the return value will be either 0 or 1 depending
on whether the boolean is false or true, respectively.

If the argument is a double value, then the double value is rounded to the nearest
long value.

If the argument is a long value, it is returned directly.

Built-In Function Reference | 136

Name
panc:to_lowercase — change all uppercase letters to lowercase

Synopsis

string to_lowercase(target);

string target;

Description

The to_lowercase function will convert all uppercase letters in the target to
lowercase. The United States (US) locale is forced for the conversion to guarantee
consistent behavior independent of the current default locale.

Built-In Function Reference | 137

Name
panc:to_string — convert argument to a string value

Synopsis

string to_string(elem);

element elem;

Description

This function will convert the argument into a string. The function will create
a reasonable human-readable representation of all data types, including lists and
nlists.

Built-In Function Reference | 138

Name
panc:to_uppercase — change all lowercase letters to uppercase

Synopsis

string to_uppercase(target);

string target;

Description

The to_uppercase function will convert all lowercase letters in the target to
uppercase. The United States (US) locale is forced for the conversion to guarantee
consistent behavior independent of the current default locale.

Built-In Function Reference | 139

Name
panc:traceback — print message and traceback to console

Synopsis

string traceback(msg);

string msg;

Description

Prints the argument and a traceback from the current execution point to the console
(stderr). Value returned is the argument. An argument that is not a string will cause
a fatal error; the traceback will still be printed. This may be selectively enabled or
disabled via a compiler option. See the compiler manual for details.

Built-In Function Reference | 140

Name
panc:unescape — replaces escaped characters with ASCII characters

Synopsis

string unescape(str);

string str;

Description

This function replaces escaped characters in the given string str to get back the
original string. This is the inverse of the escape function.

Built-In Function Reference | 141

Name
panc:value — retrieve a value specified by a path

Synopsis

element value(path);

string path;

Description

This function returns the element identified by the given path, which can be an
external path. An error occurs if there is no such element.

/y will be 200
'/x' = 100;
'/y' = 2 * value('/x');

