Pan Configuration Language
10.0

Charles Loomis

quattor

Pan Configuration Language: 10.0
Charles Loomis

Publication date 2013-02-26
Copyright © 2013 Centre National de la Recherche Scientifique (CNRS)

This work is licensed under the Creative Commons Attribution 3.0 Unported License. To view a copy of this license, visit
http://creativecommons. org/|icenses/by/ 3.0/ or send aletter to Creative Commons, 171 Second Street,

Suite 300, San Francisco, California, 94105, USA.

(©MON

http://creativecommons.org/licenses/by/3.0/

Table of Contents

PrEIACE oo a e IX
OrganiZationccouuuiiieiiiiiii e e e IX
Typographic CONVENLIONSiiiiiiiiiiiee e e e e IX

1. Getting Startedccooeviiiiiiiii e 1
Configuration LanQUAQJEceueueuuiiiiiiiiieeeeeeeeeeeeeeeeieinne e e e e e e e e 1
BENETILS vttt 2
Download and INStallationeeeiiiiii 2
Validating the Installationccccceeeeiiiiiiieiee e 3
Invoking the Pan Compiler ..., 3

2. A WRHITIWING TOUT it 5
Batch System DeSCHPLONuuuiiiiiiiiiiiiiiiiieeee e 5
Naive COoNfIQUIALIONeeeiiiiiiiiiiieiaee e 6
Using Namespaces and INCIUdES ... 7
SIMPIE TYPING e 8
Default ValUEScoooieeeee e 10
Cross-Element and Cross-Machine Validationccccvvveeee. 11
Path Prefixes ..., 13

3. COrE SYNTAX iiiiieiiiiiiiie et 15
TEMPIALES ..oeeeeeei e 15
COMMENLS ...t e e e e e e e e ene e e e eeenes 17
STAEMENTS ..o e e 17

A, DAl TY PO ciiitiiiiiiiit it 21
Type HierarChy ... 21
Properties and Primitive TYPESccovvvieveiviiiiiiiiiieee e e eeeeeeeeeeeeeeinenns 22
StNG-LIKE TYPES .o e e e e e e e e e eeees 24
RESOUICES ... e e e e ennes 25
SPECIAI TYPES et e e e 26

5. Data Manipulation Language (DML)ccccooviieiieiiiiiieieeeiiene e 27
DIML SYNTAX ettt 27
VariabIES ... 27
OPEIALOIS ...ttt e e e e e e e e e e e nnnnne 28
FIOW CONLIOL ..o e e 29

B. FUNCTIONS oottt e e e et e e e e e e e e e e 32
BUIIt-IN FUNCLIONS ... 32
User-Defined FUNCLIONSooiiiiiiiiiiiiiii et 36

Table of Contents | iii

T NV AlIAtION e 37

Forcing Validationuuuieiiiiiiiieee e e e e e e e e eeeeaeeees 37
T o] o | A 18/ o1 o O 38
Binding Primitive Types to Pathsviiiiiiiiieiiie 38
User-Defined TYPESciiiiiii e 38
Default ValUESoeiieeeceee e 40
Advanced Parameter Validationccccooveiiiiiiiiiiiiiieeeiie e 40
Validation FUNCHIONSuoiiiiiieiiie e e 41
Validation of Correlated Configuration Parameterscccccce..... 41
Cross-Machine Validationoeevviviiiiiiiiieccee e 43
STl 411 1 1 = LR 44
8. Modular Configurationsccovvviiiiiiiiicer e 45
INClUdE STAtEMENT . .oeeiieeie e 45
Structure TeMPIALESoooviiiiiiiiee e a7
9. AAVANCEA FERALUIES ...ceviiieiiiieee e e 49
F N] 4 10] =110 £ 49
(1o T |1 o PRSP 51
BUIld Metadataccocvuiiiiiiiiiiiee e e 52
10. Performance ConSIiderationsccooceeveeiiiiiiiiiiiiiieeeiie e 53
Use SPecCific Pathsovvuviiiiiiii e 53
Use Escaped Literal Path Syntaxccccoeeeiiiiiiiiiiicicceeee 53
Use BUilt-IN FUNCLIONSocveiiiiiiiiieee e 54
Invoking the Compiler ... 54
AVvoid CopyiNg SELF ...ccooiieiiece e 54
11. ComMON TAIOMS .oeiiiiiiieie e e e e e eaa e eens 55
Configuration File Templatesccccooiiiiiiiiiiiiieeeeeeeee 55
EXtension TEMPIALEScoovviiiiiiiiiiii e 56
Global Variables as SWItChESooiviiiiiiiiiieie e 56
Tri-state Variables ... 57
12. TroublesShOoOoting ..o 58
Compilation Problemscccooiiiiiieiiiiiieeeeces e 58
CommON ProbBIEMSciii e 59
100 =T oo 1 1] o RSP 60
A. Obtaining the CoOmMPIlErcccooiiiiii i 61
Binary DIStriDULIONSccooeeiieeiiiieeeeeee e 61
S0 10 | (ol =T PP RPTRPPPRN 61
J TS e 1] P-4 o] IR 62

Table of Contents | iv

B. Running the Compiler ... 64

COoMMANT LINE ..ot 64
Using java Commandcoouuuuuuiiiiiiiieeeeeeeeeeeeeeeearrn e e e e aeeaes 65
IMTAVEIN ettt e e 65
AN e 68
Invocation INside ECHPSEoovvvvevvvviiiiiii e 72
C. Command REfErenCecooovi it 74
PANC i 75
PANC-ANNOTALIONS ...ttt e e 78
PANC-DUIIA-STALS. Pl ..o 79
PaNC-Call-tree.pl . ..o 80
panc-compile-StatS. Plccccuuiiiiiiiiie e 81
PANC-MEMOIY. Pl oot 82
PANC-PrOfIlING.PI .o 83
PANC-TArEAAS. Pl ... 84
D. Built-In Function Referenceoooovviiiiiiiiiieeeeein 85
=1 0] 0= 0 [0 [P PPPPPPRURR 86
DASEBA _dECOUEuuieeiei e 88
DASEBA _ENCOUEuviieieee e 89
(o] (0] 1P PPPPPRRR 90
(01T | (TSP PRRPPRPTIN 91
JEDUG i ———— 92
EIBTE e ——————————— 93
AEPrecatedooooiiiiee e, 94
[0 [0 TS USRS 95
=T o] TSR PPTPURPPPI 96
LS o= oS UUPT TR UPPRTRN 97
EXISTS Leutttttitiiieete ittt et et e e e e e e e e e e e e e e bbbt ettt e e e e e e e e e e e e e e e e e e aaaaanas 98
file_CONLENES ..o e 99
11151 S PP PPPPPPPPPPPPRR 100
FOMMAL . e 101
IE XIS wettiiii it e 102
10 = PP PPPUPPPPUPPR 103
IS_D0O0IEAN ... 106
IS_definedccooiii - 107
IS_AOUDIE ... - 108
[EST 1S USSP 109
EST o o USSP PPRRPPN 110
[EST 1S PR SRSPPP 111
IS NUIL e —————— 112
[EST 1812 o= P UPRURRP 113
[EST oL (0] 0 1= 1 /2RSSR 114

Table of Contents | v

RS = 1ST0 LU (o= 115

[ESTES) 1] o OSSPSR 116
KB Y e aaaas 117
[ENGEN . ————— 118
1S3 PP 119
MALCH e 120
MALCNES o 121
LT o T PP 122
] S PP PPPPPP 123
(1S PR PP PRRPPPRI 124
PALN_EXISIS .o ————— 125
PIrEPENA ...t e e e e e e e ———— 126
(1= 0] P> o7 =P UUROR 128
(=] (U] o PSSP PPRPTRRUPPPRIN 129
SPIICE et —————————————— 130
Sl e e —————— 131
SUDSIE ittt 132
t0 _DOO0ICAN ...eveeiiie i 133
Lo T o (010 o] = USSR 134
Lo T 0] o T USSP 135
tO _IOWEICASE ..ot e e e e e 136
LCo TS €11 o R PUSSSRPP 137
(O U] o] o1=T o=] < PP 138
TrACEDACK ... 139
UNESCAPE wruuiiiiiieieiiteeette e ettt e e ettt e e et e e e et r e e eaa s e e e et e e e eaa e e e eaneeeennns 140
VAIUB oo 141

Table of Contents | vi

List of Figures

1.1. Graph of configuration produced by hel | o_wor | d. pan. 4
4.1. Pan language type hierarChycccccuueeimiiiiiiiiiiiiiee 22

List of Figures | vii

List of Tables

1. TypographiCc CONVENTIONScooiiiiiiiiiiiiiiii e IX
5.1, Unary DML OPEIatOrSuuiiiiiieeeeeeeiiieeieeiiiiia e e e e e e e eeeeeennnns 28
5.2. Binary DML OPEratOrSuuueeiemmiiiiiiiiiiiaaeaeaaaaaae e 28
5.3. Operator Precedence (lowest to highest)ccccoiiiiiiiinnn. 29
6.1. String Manipulation FUNCHONSccovviiiiiiiiiiiee 32
6.2. Debugging FUNCLIONScooviiiiiiiiiiiiai e 33
6.3. Encoding and Decoding FUNCHIONSeeviiiiiiiiiiiiiiieiiiiie 33
6.4. Resource Manipulation FUNCLIONSccccciiiiiiiiiiiiiiiiceeeeeeeee e 33
6.5. Type Checking FUNCLIONScoviiiiiiiiiiiiiiii e 34
6.6. Type Conversion FUNCHONSccccuuiiiiiiiiiiiiieieeeee e 35
6.7. Miscellaneous FUNCLIONScoooiiiiiiiiiiiiiiiee e 35
B.1. PanBuild M0Ojo Parameterscccccuuiiiiiiiiiiiieiieeeeeeeee e 66
B.2. PanCheckSyntax M0jo Parametersccccccvveiiiiiiiininniiis 68
B.3. Ant Task AMINDULESueeiiiiiiiiii e 69

List of Tables | viii

Preface

Organization

This book is intended to act as both a reference guide for the pan configuration
language as well as a tutorial on using the associated compiler. The first chapter
introduces the language and guides you through a basic install ation of the compiler.
Thefollowing chapter provides asimplified, real-world example to show the major
features of the pan language for site configuration. Chapters 3-8 provide a detailed
description of the pan language and act as areference for it. Chapters 9-11 provide
information about advanced features and best practices when using the language.
Finally, Chapter 12 gives some information about troubleshooting problems that
can arise when using the compiler and language. The appendices provide detailed
information on installing and using the compiler in various environments aswell as
detailed information on the pan commands and functions.

Typographic Conventions

Table 1. Typographic Conventions

filenane Referencesto files are typeset in this style. In this book, these
are usually references to configuration templates.

command Commands to be executed from the command line are typeset
inthisstyle. Thisisusually adirect or indirect invocation of the
pan configuration language compiler.

keywor d Pan configuration language keywords are typeset in this style.
They represent the language's reserved words and should appear
in configuration files exactly as written.

Preface | ix

CHAPTER 1

Getting Started

The pan configuration language alows system administrators to define
simultaneously a site configuration and a schema for validation. As a core
component of the Quattor fabric management toolkit, the pan compiler translates
thishigh-level site configuration to amachine-readable representation, which other
tools can then use to enact the desired configuration changes.

Configuration Language

The pan language was designed to have a simple, human-friendly syntax. In
addition, it allowsmorerigorousvalidation viaitsflexible datatyping featureswhen
compared to, for instance, XML and XML Schema.

The name "compiler” is actually a misnomer, as the pan compiler does much more
than a simple compilation. The processing progresses through five stages.

compilation Compile each individual template (file written
in the pan configuration language) into a binary
format.

execution The statements the templates are executed

to generate a partial tree of configuration
information. The generated tree contains all
configuration information directly specified by
the system administrator.

insertion of defaults A pass is made through the tree of configuration
information during which any default values
are inserted for missing elements. The tree of
configuration information is complete after this

stage.

Getting Started | 1

validation The configuration information is frozen and all
standard and user-specified validation is done.
Any invalid values or conditions will cause the
processing to abort.

serialization Once the information is complete and valid, it is
serialized to afile. Usually, thisfileisinan XML
format, but other representations are available as
well.

The pan compiler runs through these stages for each "object” template. Usually
there is one object template for each physical machine; although with the rise of
virtualization, it may be one per logical machine.

Benefits

Using the pan language and compiler has the following benefits:

» Declarative language allows easier merging of configurations from different
administrators.

» Encourages organization of configuration by service and function to allow
sharing of configurations between machines and sites.

» Providessimplesyntax for definition of configuration information and validation.

» Ensures a high-level of validation before configurations are deployed, avoiding
interruptions in services and wasted time from recovery.

The language and compiler are intended to be used with other tools that manage
the full set of configuration files and that can affect the changes necessary to arrive
at the desired configuration. The Quattor toolkit provides such tools, although the
compiler can be easily used in conjunction with others.

Download and Installation

The pan compiler can beinvoked viathe Unix (Linux) command line, ant, or maven.
The easiest for the ssmple examples in this book is the command line interface.
(See Appendix A for installation instructionsfor all the execution methods.) Locate
and download the latest version of the pan tarball and untar this into a convenient
directory. Y ou can find the packaged versions of the compiler in the Quattor project
space on Sourceforge.

The pan compiler requires a Java Runtime Environment (JRE) or Java Devel opment
Kit (JDK) 1.5 or later. If you will just be running a binary version of the pan
compiler, the JRE is sufficient; compiling the sources will require the JDK. Use

Getting Started | 2

a complete, certified version of the Java Virtua Machine; in particular avoid the
GNU Java Compiler (GJC) as the pan compiler will not run correctly with it.

To use the compiler from the command line, you must make it accessible from the
path.

$ export PANC _HOME=/ panc/| ocati on
$ export PATH=$PANC HOMVE/ bi n: $PATH

The above will work for Bourne shells; adjust the command for the shell that you
use. Change the value of PANC_HOVE to the directory where the pan compiler was
unpacked.

Validating the Installation

Once you have installed the compiler, make sure that it is working correctly by
using the command:

$ panc --help

Thisgivesacompletelist of all of theavailableoptions. If thecommandfails, review
the installation instructions.

Invoking the Pan Compiler

Now create afile (called a"template”) named hel | o_wor | d. pan that contains
the following:

obj ect tenplate hello_worl d;
"/ message’ = 'Hello World!"';

Compile this template into the default XML representation and look at the output.
$ panc hel l o_worl d. pan

$ cat hello_world. xn
<?xm version="1.0" encodi ng="UTF- 8" ?>
<nlist format="pan" name="profile">
<string nane="nessage">Hel |l o Wrl d!</string>
</nlist>

Theoutput should ook similar to what is shown above. Asyou can seethe generated
information hasasimple structure: atop-level element of type nlist, named "profile"
with a single string child, named "message". The value of the "message” is "Hello
World!". If the output format is not specified, the default is the "pan” XML style
shown above, in which the element names are the pan primitive types and the name
attribute corresponds to the name of the field in the pan template.

The pan compiler can generate output in three additional formats: json, text, and
dot. The following shows the output for the json format that was written to the
hell o_worl d.j sonfile.

Getting Started | 3

$ panc --formats json hello_world. pan

$ cat hello_world.json

{
"message": "Hello World!"

}

In this book, the most convenient representation is the text format. This provides a
clean representation of the configuration tree in plain text.

$ panc --formats text hell o_world. pan

$ cat hello_world.txt
+-profile
$ nmessage : (string) 'hello’

The output fileis named hel | o_wor | d. t xt . It provides the same information
as the other formats, but is easier to read.

Thelast styleisthe "dot" format.
$ panc --formats dot hello_world. pan

$ cat hello_worl d. dot

di graph "profile" {

bgcol or = bei ge

node [color = black, shape = box, fontnane=Hel vetica]
edge [color = black]

“/profile" [label = "profile"]

"/profilelmessage" [|abel = "nmessage\n'Hello World!""]
"Iprofile" -> "/profil e/ nessage"

}

Although the text is not very enlightening by itself, it can be used by Graphviz
[http://www.graphviz.org/] to generate a graph of the configuration. Processing
the above file with Graphviz produces the image shown in Figure 1.1, “Graph of
configuration produced by hel | o_wor | d. pan.”.

profile

l

message
'hello’

Figure 1.1. Graph of configuration produced by hel | o_wor | d. pan.

Getting Started | 4

http://www.graphviz.org/
http://www.graphviz.org/

CHAPTER 2

A Whirlwind Tour

This tour will highlight the major features of the pan language by showing how
the configuration for a batch system for asynchronous handling of jobs could be
described with the pan language. The fictitious, smplified batch system used here
gives you the flavor of the development process and common pan features. The
description of areal batch system would contain significantly more parameters and
Sservices.

Batch System Description

A batch system provides a set of resources for asynchronous execution of jobs
(scripts) submitted by users. The batch system (or cluster) consists of:

Server (or head node) A machine containing a service for accepting
job requests from users and a scheduler for
dispatching those jobs to available workers.

Workers Machines that accept jobs from the server,
execute them, and then return the results to the
server.

Users send a script containing the job description to the server. The server then
gueuestherequest for later execution. The scheduler periodically checksthe queued
jobs and resources, sending a queued job for execution on a worker if one is
available. The worker executes the job it has been given and keeps the server
informed about the state of the job. At the end of the job, results are returned to the
server. The user can interact with the server to determine the status of jobs and to
retrieve the output of completed jobs.

For our simplified batch system, we want to create a set of parametersthat describe
the configuration. For many real services, the configuration schemaused in panwill
closely mirror the configuration file(s) of the service. In our case we will create a
configuration schema based on the above description.

A Whirlwind Tour | 5

The server controls a set of workers and manages jobs via a set of queues. Each
gueue is named, has a CPU limit, and can be enabled or disabled. Each node also
has a name, participates in one or more gueues, and has a set of capabilities (e.g. a
particular software licenseis available, has afast network connection, etc.).

The worker needs to know with which server to communicate. Each worker will
also have aflag to indicate if the worker is enabled or disabled.

Naive Configuration

Given the previous description, a pan language configuration for both the batch
server and one batch worker can easily be created. We must create an object
template for each machinein order to have the machine descriptions created during
thecompilation. Createthefileser ver . exanpl e. or g. pan withthefollowing
contents:

obj ect tenpl ate server. exanpl e. org;

'/ bat ch/ server/ nodes/ wor ker 01. exanpl e. or g/ queues'
= list('default');

'/ bat ch/ server/ nodes/ wor ker 01. exanpl e. or g/ capabi lities'
= list('swlicense', 'fast-network');

'/ bat ch/ server/ queues/ def aul t/ maxCpuHours' = 1;

'/ bat ch/ server/ queues/ def aul t/ enabl ed" = true;

It iscustomary to use the machine name asthe object template name. For thisserver,
there is one worker node named ‘workerOl.example.org' and one queue named
‘default’. The worker node participates in the 'default’ queue and has a couple of
capabilities. The 'default’ queue has a CPU limit of 1 hour.

Create thefilewor ker 01. exanpl e. or g. pan for the worker:
obj ect tenpl ate worker01. exanpl e. or g;

'/ bat ch/ wor ker/server' = 'server.exanple.org';
'/ bat ch/ wor ker / enabl ed' = true;

This is part of the cluster controlled by the server 'server.example.org' and is
enabled.

These templates can be compiled with the following command:

$ panc --formats text *.pan

which then produces the files server.exanple.org.txt and
wor ker 01. exanpl e. org. t xt:

+-profile
+- bat ch
+-server
+- nodes
+-wor ker 01. exanpl e. org

A Whirlwind Tour | 6

+-capabilities
$ 0 : (string) 'swlicense'
$ 1 : (string) 'fast-network’

+- queues
$ 0 : (string) 'default’

+- queues
+- def aul t
$ maxCpuHours : (long) '1'

+-profile
+- bat ch
+- wor ker
$ enabled : (bool ean) 'true'
$ server : (string) 'server.exanple.org'

These generated files (or more likely their equivalents in XML) can then be used
by tools to actually configure the machines and batch services appropriately.

Using Namespaces and Includes

The naive configuration shown in the previous section has a couple of problems.
First, it will become tedious to maintain, especialy if individual machines contain
a mix of different services. Second, similar configurations would be duplicated
between object templates, increasing the likelihood of errors. These problems
can be eliminated by refactoring the configuration into separate templates and by
organizing those templates into reasonable namespaces.

As a first step in reorganizing the configuration, we pull out the batch server
and worker configurations into separate ordinary templates. These configurations
are put into services/batch-server.pan and services/ bat ch-
wor ker . pan, respectively.

tenpl at e services/ batch-server;

'/ bat ch/ server/ nodes/ wor ker 01. exanpl e. or g/ queues'
= list('default');

'/ bat ch/ server/ nodes/ wor ker 01. exanpl e. or g/ capabi l i ties’
= list('swlicense', 'fast-network');

'/ bat ch/ server/ queues/ def aul t / maxCpuHour s' = 1;
'/ bat ch/ server/ queues/ def aul t/ enabl ed' = true;

tenpl at e servi ces/ bat ch-wor ker;

'/ bat ch/ wor ker/server' = 'server.exanple.org';
' [bat ch/ wor ker/ enabl ed' = true;

Note that these files are not object templates(i.e. thereisno obj ect modifier) and
will not produce any output files themselves. Note also that they are namespaced;
the relative directory of the template must match the path hierarchy in the file
system. Inthisparticular case, these both must appear inaser vi ces subdirectory.

Object templates can also be namespaced; here we will put themintoapr of i | es
subdirectory. These object templates can then include configuration in other (non-
object) templates. The contents of these profiles becomes:

A Whirlwind Tour | 7

obj ect tenplate profiles/server.exanple.org
i nclude 'services/batch-server';
obj ect tenplate profil es/worker01. exanpl e. org

include 'services/batch-worker';

Organizing the service configurationsin this way makesit easy to include multiple
services in a particular object template. If reasonable names are chosen, then the
object template becomes self-documenting, listing the services included on the
machine.

The command to compile these object templatesis slightly different:

$ panc --formats text profiles/*.pan

The output files by default will be placed next to the object template, so in this case
they will be in the pr of i | es subdirectory. You can verify that the reorganized
configuration produces exactly the same configuration as the first example.

Simple Typing

Although the configuration is completely specified in the previous examples, it
does not protect you from inappropriate values, for instance, specifying 'ON'
for the boolean worker's enabl ed parameter or a negative number for the
max CpuHour s parameter of aqueue. The pan language has anumber of primitive
types, collections, and mechanisms for user-defined types.

Createafilenamedser vi ces/ bat ch-t ypes. pan withthefollowing content:
decl aration tenpl ate services/batch-types; O

type batch_capabilitiesd = string[];

type batch_queue_listO = string[1..];

type batch_nodell = {
' queues' : batch_queue_li st
‘capabilities' ? batch_capabilities

}s

type batch_queued = {
" maxCpuHours' : 1ong(O0..)
‘enabl ed" : bool ean

i

type batch_serverd = {
‘nodes' : batch_node{}
' queues' : batch_queue{}

}s

type batch_workerO = {
‘server' : string
‘enabl ed' : bool ean

}s

A Whirlwind Tour | 8

0 Thebatch worker typedefinesarecord (nlist or hash with named children) for
the worker configuration. The 'enabled’ flag is defined to be a boolean value.
The'server' isdefined to be astring. For areal configuration, the server would
likely be define to be a hostname or | P address with appropriate constraints.

[0 Thebatch_server type also defines a record with nodes and queues children.
These are both defined to be nlists where the keys are the worker host name
or the queue name, respectively. The notation nyt ype{} definesan nlist.

0 Type batch_queue type defines a record with the characteristics of a queue.
Each queue can be enabled or disabled. The max CpuHour s isrequired to be
anon-negative long value. The range specification (0. .) limitsthe allowed
values. Range limits like this apply to the numeric value for long and double
types; it applies to the length for strings.

0 Type batch_node again defines a record for a single node. The node
description contains alist of queues and alist of capabilities. In this case, the
record specifier uses a question mark (*?) indicating that the field is optional;
if the record specifier uses acolon (*:') then the field is required.

0 Typebatch_queue listisan aliasfor alist of strings, but also contains arange
limitation [1. .] . This range limitation means that the list must contain at
least one element.

0 Typebatch capabilitiesisjust an aliasfor alist of strings. It isaconvenience
type used to make the field description clearer.

0 Thetemplatedecl ar at i on usesthe declaration modifier. This means that
the template will only be executed once during the build of a particular
machine profile. It also limitsthe content of the template to variable, function,
and type definitions.

A complete set of types is now available for the batch configuration, but at this
point, none of these types have been attached to a part of the configuration.
The bi nd statement associates a particular type to a path. Note that a single
path can have multiple type declarations associated with it. For the batch
configuration, theser vi ces/ bat ch- server. panandser vi ces/ bat ch-
wor ker . pan have had abi nd statement added.

tenpl ate servi ces/ batch-server;
i nclude 'services/batch-types';
bind '/batch/server' = batch_server;

'/ bat ch/ server/ nodes/ wor ker 01. exanpl e. or g/ queues'
= list('default');

'/ bat ch/ server/ nodes/ wor ker 01. exanpl e. or g/ capabi lities'
= list('swlicense', 'fast-network');

'/ bat ch/ server/ queues/ def aul t/ maxCpuHours' = 1;
'/ bat ch/ server/ queues/ def aul t/ enabl ed" = true;

tenpl at e servi ces/ bat ch-wor ker;

i nclude 'services/batch-types';

A Whirlwind Tour | 9

bi nd '/ bat ch/wor ker' = batch_worker

'/ bat ch/ wor ker/server' = 'server.exanple.org'
'/ bat ch/ wor ker/ enabl ed" = true

Types have been bound to two paths with these bi nd statements. If any of the
content does not conform to the specified types, then an error will occur during the
compilation. Note that we have not limited the valuesfor paths other than these two
paths and their children. Configuration in other paths can be added without being
subject to these type definitions. A global schema can be defined by binding atype
definition to the root path '/'.

Default Values

Very often configuration parameters can have reasonable default values, avoiding
the need to specify them explicitly within a machine profile. The pan type system
allows default values to be defined and then inserted into a machine configuration
when necessary. The following isamodified version of the bat ch-t ypes. pan
file with default values added.

decl aration tenpl ate services/ batch-types
type batch_capabilities = string[];
type batch_queue_list = string[1l..];

type batch_node = {
' queues' : batch_queue_list = list('default') O
‘capabilities' ? batch_capabilities

b

type batch_queue = {
' maxCpuHours' : long(0..) =1 0O
‘enabl ed" : boolean = true O

}s

type batch_server = {
‘nodes' : batch_node{}

'queues' : batch_queue{} = nlist('default', nlist()) O

b

type batch_worker = {
‘server' : string
‘enabl ed" : boolean = true O

i ;

0 If the queue list for a node is not specified, then assume that the node will

participate in the 'default’ queue. That is, the default value is a one-element

list containing the string 'default’.

Default to 1 CPU-hour for the queue execution limit.

By default, a queue will be enabled.

O If no queues are specified, then provide an nlist containing only a queue
definition for the 'default’ queue. Note that the actual queue parameters are
provided by the type definition batch_queue.

0 By default, aworker will be enabled.

O d

A Whirlwind Tour | 10

Using these default values, then simplifies the configuration templates
servi ces/ bat ch-server. panandservi ces/ bat ch-wor ker. pan.

tenpl at e services/ batch-server;
i nclude 'services/batch-types';
bi nd '/batch/server' = batch_server;

'/ bat ch/ server/ nodes/ wor ker 01. exanpl e. or g/ capabi l i ti es'
= list('swlicense', 'fast-network');

tenpl at e servi ces/ bat ch-wor ker;
i nclude 'services/batch-types';
bi nd '/ batch/worker' = batch_worker;

'/ bat ch/ wor ker/server' = 'server.exanple.org';

Compiling these templates will result in exactly the same generated files as with
the previous configuration in which the default values were explicitly specified in
the configuration. To use a value other than the default, the path just needs to be
assigned thedesired value. The defaults mechanismwill never replaceavaluewhich
was explicitly specified in the configuration.

Cross-Element and Cross-Machine
Validation

Much of the power of using the pan language comes from its ability to ensure
the consistency between different elements within a machine profile and between
configurations of different machine profiles. In our example we have two cases
where these types of validations would be useful: 1) the list of queues for a node
should only reference defined queues and 2) the worker list on the server and the
defined workers should be consistent.

Thefilebat ch-t ypes. pan will be expanded to include validation functions for
these cases. Each validation function must returnt r ue if the valueis valid. If the
value is not valid, then the function can return f al se or throw an exception via
theer r or function. Theer r or function allowsyou to provide adescriptive error
message for the user. The contents of the modified file are:

decl aration tenpl ate services/batch-types;

function valid_batch_queue_listd = {
foreach (index; queue_nane; ARGV[0]) {
if (!path_exists('/batch/server/queues/' + queue_nane)) {
return(fal se);
H
Ik
true;

b

function valid_batch_node_nlistO = {
foreach (hostname; properties; ARGV[O0]) {

A Whirlwind Tour | 11

path = "profiles/' + hostname + ':/batch/worker';
if (!path_exists(path)) {

error(path + ' doesn''t exist');

return(fal se);

H
IE
true;

}s

function server_existsO = {
return(path_exists('profiles/' + ARGV[0O] + ':/batch/server'));
b

function server_knows_about _nmel = {

regex = '“profiles/(.*)$";

i f (match(OBJECT, regex)) {
parts = mat ches(OBJECT, regex);
path = 'profiles/' + ARG/ 0] +

':/batch/server/nodes/' + parts[1];
if (!path_exists(path)) {
error(path + ' doesn''t exist');

} else {

error(OBJECT + ' doesn''t match ' + regex);
b
true;

}s

function valid_serverd = {
(server_exists(ARGV[0]) && server_knows_about _nme(ARGV[0]));
¥

type batch_capabilities = string[];
type batch_queue list = string[l..];
type batch_node = {
' queues' : batch_queue_list = list('default')

with valid_batch_queue_list(SELF) O
‘capabilities' ? batch_capabilities

i ;

type batch_queue = {
' maxCpuHours' : long(0..) =1
‘enabl ed" : boolean = true

i

type batch_server = {
'nodes' : batch_node{} with valid_batch_node nlist(SELF)O

' queues' : batch_queue{} = nlist('default', nlist())
iE
type batch_worker = {

‘server' : string with valid_server(SELF)O

‘enabl ed' : bool ean = true
iE

0 Theargument to this function is the batch queue list for a node. The function
loops over the queue names and ensures that the associated path in the
configuration exists. For example for the 'default’ queue, the path ‘/batch/
server/queues/default’ must exist.

0 The argument to this function is the nlist of worker nodes. The function
loops over the worker node entries and constructs a path using the worker

A Whirlwind Tour | 12

node name. For example for the worker node 'workerOl.example.org, it
will construct the path ‘workerOl.example.org:/batch/worker'. This is an
external path that references another machine profile. In this case, the server
profile 'server.example.org’ will reference all of the worker profiles, e.g.
‘workerOl.example.org'. If thenodeis configured asaworker, the path '/batch/
worker' will exist on the node.

0 The argument to this function is the name of the server as configured on a
worker node. Similar to the previous function, this constructs a path on the
referenced server and verifiesthat it exists. In this example, each worker will
verify that the path 'server.example.org:/batch/server' exists.

0 The argument to this function is also the name of the server as configured
on aworker node. This function will extract the list of workers in the server
configuration and ensure that the worker's name appears. This uses a regular
expression to extract the machine name from the OBJECT variable, which
contains the name of the object template being processed. The constructed
path will exist if the server configuration contains the named worker node.

0 The argument to this function is the name of the server. It is a convenience
function that combines the previous two functions.

These functions aretied to atype definition using awi t h clause. Thewi t h clause
will execute the given code block for the given type after the profile has been fully
constructed. Usually, the code block will referencethe special variable SELF, which
contains the value associated with the given type. Although any block of code can
be used in the type definition, it is best practice to define a validation function with
the code and reference that validation function. Thismakesthetype definition easier
toread. Thewi t h clauses for the cross-element and cross-machine validation are:

00 Runthevalid batch_queue_|i st function for al of the node queue
lists.
0 Runtheval i d_bat ch_node_nli st function for the server's node nlist.

0 Runtheval i d_server function for the worker node's configured server.

This type of validation ensures internal and external consistency of machine
configurations and can significantly enhance confidence in the defined
configurations. Note that the cross-machine validation will work even with circular
dependencies, alowing server and client validation for services.

Path Prefixes

Althoughinthisparticular examplethereisalimited number of parameters set, most
real examples involve a large number of parameters and repetitive specifications
of similar absolute paths. The pr ef i x pseudo-statement is a convenience for
reducing duplication in path specifications. The path provided in the prefi x
statement will be applied to any relative paths found in atemplate after thepr ef i x
statement.

A Whirlwind Tour | 13

As an example, we take the batch server configuration, adding a second worker
node.

tenpl ate servi ces/ batch-server;

i nclude ' services/batch-types';

bind '/batch/server' = batch_server;
prefix '/batch/server/nodes';

"wor ker 01. exanpl e. org/ capabi lities'
= list('swlicense', 'fast-network');

"wor ker 02. exanpl e. org/ capabilities' = list();

Inthiscase, thissavesusfrom having to duplicatethe prefix ‘/batch/server/nodes for
each worker node. Note that the prefix is expanded when the template is compiled
and does not affect any included templates. Although multiple pr ef i x statements
can be used in atemplate, it is best practice to use only one near the beginning of
the template.

A Whirlwind Tour | 14

CHAPTER 3

Core Syntax

Asyouwill have seenin thewhirlwind tour, acompl ete site or service configuration
consists of a set of files called "templates’. These files are usually managed via
a versioning system to track changes and to permit reverting to an earlier state.
The top-level syntax of the templates is especially simple: a template declaration
followed by alist of statements that are executed in sequence. The compiler will
serialize a machine profile, usually in XML format, for each "object” template it
encounters.

Templates

Syntax

A machine configuration is defined by a set of files, called templates, written
in the pan configuration language. These templates define simultaneously the
configuration parameters, the configuration schema, and validation functions. Each
template is named and is contained in a file having the same name.

The syntax of atemplate fileis simple:

[modifier] tenplate tenplate-nane;
[statement ...]

where the optional modifier is either obj ect, structure, uni que, or
decl ar at i on. There are five different types of templates that are identified by
the template modifier; the four listed above and an "ordinary" template that has no
modifier.

A template nameis a series of substrings separated by slashes. Each substring may
consist of letters, digits, underscores, hyphens, periods, and pluses. The substrings
may not be empty or begin with a period; the template name may not begin or end
with a slash.

Core Syntax | 15

Each template must residein aseparatefilewiththenamet enpl at e- nane. pan
with any terms separated with slashes corresponding to subdirectories. For example,
a template with the name "service/batch/worker-23" must have a file name of
wor ker - 23. pan and residein asubdirectory ser vi ce/ bat ch/ .

Note

The older file extension "tpl" is also accepted by the pan compiler, but the
"pan" extension is preferred. If files with both extensions exist for a given
template, then thefile with the " pan” extension will be used by the compiler.

Types of Templates

Object Templates

An object template is declared viathe obj ect modifier. Each object template is
associated with amachine profile and the pan compiler will, by default, generate an
XML profile for each processed object template. An object template may contain
any of the pan statements. Statements that operate on paths may contain only
absol ute paths.

Object template names may be namespaced, allowing organization of object
templates in directory structures as is done for other templates. For the automatic
loading mechanism to find object templates, the root directory containing them
must be specified explicitly in the load path (either on the command line or viathe
LOADPATH variable).

Ordinary Templates

An ordinary template uses no template modifier in the declaration. These templates
may contain any pan statement, but statements must operate only on absol ute paths.

Unique Templates

A template defined with the uni que modifier behaves like an ordinary template
except that it will only be included once for each processed object template. It has
the same restrictions as an ordinary template. It will be executed when the first
include statement referencing the template is encountered.

Declaration Templates

A template declared with a decl ar at i on modifier is a declaration template.
These templates may contain only those pan statements that do not modify the
machine profile. That is, they may contain only type, bind, variable, and function
statements. A declaration template will only be executed once for each processed

Core Syntax | 16

object template no matter how many times it isincluded. It will be executed when
the first include statement referencing the template is encountered.

Structure Templates

A template declared with the st r uct ur e modifier may only contain include
statements and assignment statements that operate on relative paths. The include
statements may only reference other structure templates. Structure templates are an
aternative for creating nlists and are used viathe cr eat e function.

Comments

These files may contain comments that start with the hash sign (‘#) and terminate
with the next new line or end of file. Comments may occur anywhere in the file
except inthe middle of strings, where they will betaken to be part of the string itself.

Whitespace in the template files is ignored except when it is used to separate
language tokens.

Statements

Assignment

Assignment statements are used to modify a part of the configuration tree by
replacing the subtree identified by its path by the result of the execution a DML
block. This result can be a single property or a resource holding any number of
elements. The unconditional assignment is:

[final] path = dn;

where the path is represented by a string literal. Single-quoted strings are slightly
more efficient, but double-quoted strings work as well.

The assignment will create parents of the value that do not already exist.

If a value aready exists, the pan compiler will verify that the new value has a
compatible type. If not, it will terminate the processing with an error.

If thef i nal modifier is used, then the path and any children of that path may not
be subsequently modified. Attempts to do so will result in afatal error.

A conditional form of the assignment statement also exists:
[final] path ?= dm ;

where the path is again represented by a string literal. The conditional form (?=)
will only executethe DML block and assign avalueif the named path does not exist
or containsthe undef value.

Core Syntax | 17

Prefix

The prefix (pseudo-)statement provides an absolute path used to resolve relative
pathsin assignment statementsthat occur afterwardsin thetemplate. It hastheform:

prefix '/some/absol ute/path';

The path must be an absol ute path or an empty string. If the empty string isgiven, no
prefix is used for subsequent assignment statements with relative paths. The prefix
statement can be used multiple times within a given template.

This statement is evaluated at compile time and only affects assignment statements
in the same file as the definition.

Include

The include statement acts as if the contents of the named template were included
literally at the point the include statement is executed.

include dni;

The DML block must evaluateto astring, undef , or nul | . If theresultisundef
or nul |, the include statement does nothing; if the result is a string, the named
template is loaded and executed. Any other type will generate an error.

Ordinary templates may be included multiple times. Templates marked as
decl arati on or uni que templates will be only included once where first
encountered. Includes which create cyclic dependencies are not permitted and will
generate afata error.

There are some restrictions on what types of templates can be included. Object
templates cannot be included. Structure templates can only include and be
included by other structure templates. Declaration templates can only include other
declaration templates. All other combinations are allowed.

Variable Definition

Global variables can be defined viaa variable statement. These may be referenced
from any DML block after being defined. They may not be modified from a DML
block; they can only be modified from a variable statement. Like the assignment
statement there are conditional and unconditional forms:

[final] variable identifier ?= dm;
[final] variable identifier = dm;

For the conditional form, the DML block will only be evaluated and the assignment
done if the variable does not exist or hasthe undef value.

Core Syntax | 18

If thef i nal modifier isused, then the variable may not be subsequently modified.
Attempts to do so will result in afatal error.

Pan provides severa automatic global variables: OBJECT, SELF, FUNCTI ON,
TEMPLATE, and LOADPATH. OBJECT contains the name of the object template
being evaluated; it isafinal variable. SELF isthe current value of a path referred to
inan assignment or variable statement. The SELF reference cannot be modified, but
children of SELF may be. FUNCTI ON contains the name of the current function,
if it exists. FUNCTI ON is afinal variable. TEMPLATE contains the name of the
template that invoked the current DML block; itisafinal variable. LOADPATH can
be used to modify the load path used to locate template for the include statement.

Any valid identifier may be used to name a global variable.
Caution

Global and local variables share a common namespace. Best practice
dictates that global variables have names with all uppercase letters (e.g.
MY_GLOBAL_VAR) and local variables have names with all lowercase
letters (e.g. my_| ocal _var). Thisavoids conflicts and unexpected errors
when sharing configurations.

Function Definition

Functions can be defined by the user. These are arbitrary DML blocks bound to an
identifier. Once defined, functions can be called from any subsequent DML block.
Functions may only be defined once; attempts to redefine an existing function will
cause the compilation to abort. The function definition syntax is:

function identifier = dnl;

See the Function section for more information on user-defined functions and a list
of built-in functions.

Note that the compiler keeps distinct function and type namespaces. One can define
afunction and type with the same names.

Type Definition

Type definitions are critical for the validation of the generated machine profiles.
Types can be built up from the primitive pan types and arbitrary validation
functions. New types can be defined with

type identifier = type-spec;

A type may be defined only once; attempts to redefine an existing type will cause
the compilation to abort. Typesreferenced in the type-spec must already be defined.
See the Type section for more details on the syntax of the type specification.

Core Syntax | 19

Note that the compiler keeps distinct function and type namespaces. One can define
afunction and type with the same name.

Validation

The bind statement binds a type definition to a path. Multiple types may be bound
to asingle path. During the validation phase, the value corresponding to the named
path will be checked against the bound types.

bi nd path = type-spec;
See the Type section for a complete description of thet ype- spec syntax.

The valid statement binds avalidation DML block to a path. It has the form:
valid path = DM;

Thisis aconvenience statement and has exactly the same effect as the statement:
bind path = el ement with DM;

The pan compiler internally implementsthis statement asthe bind statement above.

Core Syntax | 20

CHAPTER 4

Data Types

The data typing system forms the foundation of the validation features of the pan
language. All configuration elements are implicitly typed based on values assigned
to them. Types, once inferred, are enforced by the compiler.

Type Hierarchy

There are four primitive, atomic types in the pan language: boolean, long,
double, and string. Additionally, there are three string-like types. path, link,
and regular expression. These appear in specia constructs and have additional
validity constraints associated with them. All of these atomic types are known as
"properties’.

The language contains two types of collections: list and nlist. The'list' isan ordered
list of elements, which uses the index (an integer) asthe key. The named list (nlist)
associates a string key with a value; these are also known as hashes or associative
lists. These collections are known as "resources”.

The completetype hierarchy isshown in Figure 4.1, “ Pan language type hierarchy”,
including the two special typesundef and nul | .

Data Types | 21

=) @

(boolean) (nlist) (list)

number

(long) (double) ‘
(path)(link) @;?;S':iror)

Figure 4.1. Pan language type hierarchy
Implicit Typing

If you worked through the exercises of the previous section, you will have
discovered that although you have an intuitive idea of what type a particular
path should contain (e.g. / har dwar e/ cpu/ nunber should be positive long),
the pan compiler does not. Downstream tools to configure a machine will likely
expect certain values to have certain types and will produce errors or erroneous
configurations if the correct type is not used. One of the strengths of the
pan language is to specify constraints on the values to detect problems before
configurations are deployed to machines.

All of the elements in a configuration will have a concrete data type assigned to
them. Usually thisisinferred from the configurationitself. Onceaconcrete datatype
has been assigned to an element, the compiler will enforcethe datatype, disallowing
replacement of a long value with a string, for instance. More detailed validation
must be explicitly defined in the configuration (see the Validation chapter).

Properties and Primitive Types

Boolean Literals

Thereareexactly two possiblebooleanvalues: t r ue andf al se. They must appear
as an unquoted word and completely in lowercase.

Data Types | 22

Long Literals

Long literals may be given in decimal, hexadecimal, or octal format. A decimal
literal isasequence of digits starting with anumber other than zero. A hexadecimal
literal startswith the'0x’ or '0X" and isfollowed by asequence of hexadecimal digits.
Anoctal literal startswith azeroisfollowed by asequence of octal digits. Examples:
123 # decimal long literal

0755 # octal long literal
OxFF # hexadecinal long literal

Long literals are represented internally as an 8-byte signed number. Long values
that cannot be represented in 8 bytes will cause a syntax error to be thrown.

Double Literals

Double literals represent a floating point number. A double literal must start with a
digit and must contain either a decimal point or an exponent. Examples:

0.01

3. 14159

le-8
1. 3E10

Note that '.2' is not avalid double literal; this value must be written as '0.2".

Double literals are represented internally as an 8-byte value. Double values that
cannot be represented in 8 bytes will cause a syntax error to be thrown.

String Literals

The string literals can be expressed in three different forms. They can be of any
length and can contain any character, including the NULL byte.

Single quoted strings are used to represent short and simple strings. They cannot
span severa lines and all the characters will appear verbatim in the string, except
the doubled single quote which is used to represent a single quote inside the string.
For instance:

'foo’

"it’’s a sentence’
N dH L\ d+S

Thisisthe most efficient string representation and should be used when possible.

Double quoted strings are more flexible and use the backslash to represent escape
sequences. For instance:

"foo0"

"it's a sentence"

"Java-style escapes: \t (tab) \r (carriage return) \n (newine)"
"Java-styl e escapes: \b (backspace) \f (formfeed)"

Data Types | 23

"Hexadeci mal escapes: \x3d (=) \x00 (NULL byte) \xOA (newl ine)"
"M scel | aneous escapes: \" (double quote) \\ (backslash)"
"this string spans two |ines and\

does not contain a new ine"

Invalid escape sequences will cause a syntax error to be thrown.

Multi-line strings can be represented using the 'here-doc' syntax, likein shell or Perl.

"/test' = 'foo' + <<EOT + 'bar';

this code will assign to the path '/test' the string

made of ‘foo’, plus this text including the final newine,
plus ‘bar’...

EOT

The contents of the'here-doc' are treated as a single-quoted string. That is, no escape
processing is done.

The easiest solution to put binary data inside pan code is to base64 encode it and
put it inside "here-doc” strings like in the following example:

'/ system bi nary/stuff' = base64_decode(<<EOT);

H4s| AOMy DWAAO2PQQ7 DMAGE731FX9BT1f 8Q

Z52i Yht hEi W r 2Si t CdmxCKOE3WBno+36n2G

8UbOr YYWGROCgur Be4JeCex| 2ahgWr5r ul aL

t I mkDxbuc SOt cc3t 5GXMAgeZnl Yo+TvAnsL8

GGELobbUUX7pT+pxkXJc/ 5Bx5p0ki 7Cgg5Kcc

G CR8Pzr uUf P2xf JgVqQHCgEAAA==
EOT

Thebase64_decode function isone of the built-in pan functions.
String-Like Types
Path

Pan paths are represented as string literals; either of the standard quoted formsfor a
string literal can be used to represent apath. There are three different types of paths:
external, absolute, and relative.

An external path explicitly references an object template. The syntax for an external
pathis:

my/ ext er nal / obj ect : / sonme/ absol ut e/ pat h

where the substring before the colon is the template name and the substring after
the colon is an absolute path. The leading slash of the absolute path is optional in
an external path. This form will work for both namespaced and non-namespaced
object templates.

An absolute path starts at the top of aconfiguration tree and identifiesanode within
the tree. All absolute paths start with a slash (/") and are followed by a series of
terms that identify a specific child of each resource. A bare slash ("/") refersto the

Data Types | 24

full configuration tree. The allowed syntax for each term in the path is described
below.

A relative path refers to a path relative to a structure template. Relative paths do
not start with a slash, but otherwise are identical to the absolute paths.

Terms may consist of letters, digits, underscores, hyphens, and pluses. Terms
beginning with a digit must be a valid long literal. Terms that contain other
characters must be escaped, either by using the escape function within a DML
block or by enclosing the term within braces for a path literal. For example, the
following creates an absol ute path with three terms:

/ al pha/ {a/ b}/ ganma

The second term is equivalent to escape(‘a/b').
Link

A property can hold a reference to another element; this is known as alink. The
value of thelink isthe absolute path of the referenced element. A property explicitly
declared to be alink will be validated to ensure that 1) it represents avalid absolute
path and 2) that the given path existsin the final configuration.

Regular Expression

Regular expressionsarewritten asastandard pan string literals. Theimplementation
exposes the Java regular expression syntax, which is largely compatible with the
Perl regular expression syntax. Because certain characters have a special meaning
in pan double quoted strings, characters like backslashes will need to be escaped,;
consequently, it is preferable to use single-quoted strings for regular expression
literals.

When the compiler can infer that a string literal must be a regular expression, it
will validate the regular expression at compiletime, failing when an invalid regular
expression is provided.

Resources

There aretwo types of resources supported by pan: list and nlist. A list isan ordered
list of elements with the indexing starting at zero. In the above example, there are
two lists/ har dwar e/ di sks/ i de and / har dwar e/ ni c. The order of alist
is significant and maintained in the serialized representation of the configuration.
An nlist (named list) associates a name with an element; these are also known as
hashes or associative arrays. Onenlist in the above exampleis/ har dwar e/ cpu,
which has ar ch, cor es, nodel , nunber, and speed as children. Note that
the order of an nlist is not significant and that the order specified in the template

Data Types | 25

file is not preserved in the serialized version of the configuration. Although the
algorithm for ordering the children of an nlist in the serialized file is not specified,
the pan compiler guarantees a consistent ordering of the same children from one
compilation to the next.

Within a given path, lists and nlists can be distinguished by the names of their
children. Lists always have children whose names are valid long literals. In the
following example, / nyl i st isalist with three children:

obj ect tenplate nylist;

"/nylist/0" = 'decinmal index';
"/nmylist/01' = 'octal index';
"I'nmylist/0x2' = 'hexadecimal index';

The indices can be specified in decimal, octal, or hexadecimal. The names of
children in an nlist must begin with aletter or underscore.

Special Types
The pan language contains two special types. undef and nul | .

Theundef literal can be used to represent the undefined element, i.e. an element
which isneither a property nor aresource. The undefined element cannot be written
to afina machine profile and most built-in functions will report afatal error when
processing it. It can be used to mark an element that must be overwritten during
the processing.

The nul | value deletes the path or global variable to which it is assigned. Most
operations and functions will report an error if thisvalue is processed directly.

Data Types | 26

CHAPTER 5

Data Manipulation Language
(DML)

Any non-trivial configuration will need to have some values that are calculated.
The Data Manipulation Language (DML), a subset of the full pan configuration
language, fulfills this role. This subset has the features of many imperative
programming languages, but can only be used on the right-hand side of a statement,
that is, to calculate avalue.

DML Syntax

A DML block consists of one or more statements separated by semicolons. The
block must be delimited by braces if there is more than one statement. The value
of the block is the value of the last statement executed within the block. All DML
statements return avalue, even flow control statementslikei f and f or each.

Variables

To ease data handling, you can use local variables in any DML expression. They
are scoped to the outermost enclosing DML expression. They do not need to be
declared before they are used. The local variables are destroyed once the outermost
enclosing DML block terminates.

As afirst approximation, variables work the way you expect them to work. They
can contain properties and resources and you can easily access resource children
using sgquare brackets:

popul ate /table which is an nlist

"/table/red” = 'rouge’
"/table/green’ = 'vert’;

"ftest' = {
x =list('a’, 'b", 'c'); # x is a list

Data Manipulation Language (DML) | 27

y = value(’'/table’); # vy is anlist
z = x[1] + y['red]; # z is a string ('arouge')
I ength(z); # this will be 6

Local variables are subject to primitive type checking. So the primitive type of a
local variable cannot be changed unlessthe variableis assigned toundef or nul |
between the type-changing assignments.

Global variables (defined with the variable statement) can be read from the DML
block. Global variables may not be modified from within the block; attempting to
do so will abort the execution.

Caution

Global and local variables share the same namespace. Consequently, there
may be unintended naming conflicts between them. The best practice to
avoid this is to name all local variables with al lowercase letters (e.g.
ny_| ocal _var) and all global variables with all uppercase |etters (e.g.
MY_GLOBAL_VAR).

Operators

The operators available in the pan Data Manipulation Language (DML) are very
similar to those in the Java or ¢ languages. The following tables summarize the
DML operators. The valid primitive types for each operator are indicated. Those
marked with "number" will take either long or double arguments. In the case of
binary operators, the result will be promoted to a doubleif the operands are mixed.

Table 5.1. Unary DML Operators

+ |number preserves sign of argument
- |number changes sign of argument
~ llong bitwise not

I |boolean logical not

Table 5.2. Binary DML Operators

+ |number addition

+ |string string concatenation
- |number subtraction

* \number multiplication

[|number division

% |long modulus

Data Manipulation Language (DML) | 28

& |long bitwise and
| |long bitwise or
N llong bitwise exclusive or
&& |boolean logical and (short-circuit logic)
|| |boolean logical or (short-circuit logic)
== |number equal
== |string lexical equal
I= |number not equal
I= |string lexical not equal
> \number greater than
> |string lexical greater than
>= | number greater than or equal
>= |string lexical greater than or equal
< |number less than
< |string lexical lessthan
<= |number less than or equal
<= |string lexical less than or equal

Table 5.3. Operator Precedence (lowest to highest)

&&
|

N

&

<, <=, >, >=

+ (binary), - (binary)
* [, %
+ (unary), - (unary), !, ~

Flow Control

DML contains four statements that permit non-linear execution of code within a
DML block. Thei f statement allows conditional branches, the whi | e statement
allows looping over a DML block, the f or statement allows the same, and the
f or each statement allows iteration over an entire resource (list or nlist).

Data Manipulation Language (DML) | 29

Caution

These statements, likeal DML statements, return avalue. Be careful of this,
because unexecuted blocks generally will return undef , which may lead to
unexpected behavior.

Branching (i f statement)

Thei f statement allows the conditional execution of aDML block. The statement
may include an el se clause that will be executed if the conditionisf al se. The
syntax is:

if (condition-dm) true-dm;
if (condition-dml) true-dml else fal se-dm;

where all of the blocks may either be asingle DML statement or a multi-statement
DML block.

The value returned by this statement is the value returned by the t r ue- dm or
fal se-dml block, whichever is actually executed. If the el se clause is not
present and thecondi ti on- dm isfalse, theif statement returnsundef .

Looping (whi | e and f or statements)

Simple looping behavior is provided by the whi | e statement. The syntax is:

while (condition-dm) body-dm ;

Theloop will continue until thecondi ti on- dm evaluatesasf al se. Thevaue
of this statement is that returned by thebody- dm block. If thebody- dm block
is never executed, then undef isreturned.

The pan language also containsaf or statement that in many cases providesamore
concise syntax for many types of loops. The syntax is:

for (initialization-dm; condition-dm; increnent-dm) body-dmn ;

Theinitialization-dm block will first be executed. Before each iteration
the condi ti on-dm block will be executed; the body-dm will only be
executed (again) if the condition evaluates to t r ue. After each iteration, the
i ncrenment -dml block is executed. If the condition never evaluatesto t r ue,
then the value of the statement will be that of thei ni ti al i zati on-dm . All
of the DML blocks must be present, but those not of interest can be defined as just
undef .

Note that the compiler enforces an iteration limit to avoid infinite loops. Loops
exceeding the iteration limit will cause the compiler to abort the execution. The
value of thislimit can be set viaacompiler option.

Data Manipulation Language (DML) | 30

Iteration (f or each statement)

The foreach statement allows iteration over all of the elements of alist or nlist.
The syntax is:

foreach (key; value; resource) body-dm ;

This will cause the body- dni to be executed once for each element in resource
(alist or nlist). The local variableskey and val ue (you can choose these names)
will be set at each iteration to the key and value of the element. For alist, the key
is the element's index. The iteration will always occur in the natural order of the
resource: ordinal order for listsand lexical order of the keysfor nlists.

Thevaluereturned will be that of the last iteration of thebody- dmi . If thebody-
dm isnever executed (for an empty list or nlist), undef will be returned.

The foreach statement is not subject to the compiler'siteration limit. By definition,
the resource has a finite number of entries, so this safeguard is not needed.

Thisform of iteration should be used in preferenceto thef i r st , next , and key
functions whenever possible. It is more efficient than the functional forms and less
prone to error.

Data Manipulation Language (DML) | 31

CHAPTER 6

Functions

The pan configuration has arich set of built-in functions for manipulating elements
and for debugging. In addition, user-defined functions can be specified, which are
often used to make configurations more modular and maintainable.

Built-In Functions

Built-in functions are actually treated as operators within the DML language.
Because of this, they are highly optimized and often process their arguments
specialy. In al cases, users should prefer built-in functions to user-defined
functions when possible. The following tables describe all of the built-in functions;
refer to the appendix to see the arguments and other detailed information about the
functions.

Table 6.1. String Manipulation Functions

file_contents(3)| Lookup the named file and provide the file's contents as a string.

format(3) Generate a formatted string based on the formatting parameters
and the values provided.

index(3) Return the index of a substring or -1 if the substring is not
found.

length(3) Givesthe length of astring.

match(3) Return a boolean indicating if a string matches the given regular
expression.

matches(3) Return an array containing the matched string and matched
groups for a given string and regular expression.

replace(3) Replace all occurrences of a substring within a given string.
splice(3) Remove a substring and optionally replace it with another.
split(3) Split a string based on a given regular expression and return an

array of the results.

Functions | 32

substr(3)

Extract a substring from the given string.

to_lowercase(3)

Change all of the charactersin astring to lowercase (using the
USlocale).

to_uppercase(3)

Change all of the charactersin a string to uppercase (using the
USlocale).

Table 6.2. Debugging Functions

debug(3) Print a debugging message to the standard error stream. Returns
the message or undef .
error(3) Print an error message to the standard error and terminate
processing.
traceback(3) | Print an error message to the standard error along with a
traceback. Returnsundef .
deprecated(3) |Print awarning message to the standard error if required by
the deprecation level in effect. Returnst he nmessage or
undef .
Table 6.3. Encoding and Decoding Functions
base64 _decode(¥)ecode a string that is encoded using the Base64 standard.
base64 encode(Encode a string using the Base64 standard.
digest(3) Create message digest using specified algorithm.
escape(3) Escape characters within the string to ensure string isa valid
nlist key (path term).
unescape(3) | Transform an escaped string into its original form.
Table 6.4. Resource Manipulation Functions
append(3) Add avaueto theend of alist.
create(3) Create an nlist from the named structure template.
first(3) Initialize an iterator over aresource. Returns a boolean to
indicate if more values exist in the resource.
nlist(3) Create an nlist from the given key/value pairs given as
arguments.
key(3) Find the n'th key in an nlist.
length(3) Get the number of elementsin the given resource.
list(3) Create alist from the given arguments.
merge(3) Perge two resources into a single one. This function aways
creates a new resource and leaves the arguments untouched.

Functions | 33

next(3)

Extract the next value while iterating over aresource. Returns a
boolean to indicate if more values exist in the resource.

prepend(3)

Add avalue to the beginning of alist.

splice(3)

Remove a section of alist and optionally replace removed
values with thosein agiven list.

Table 6.5. Type Checking Functions

is_boolean(3)

Check if the argument is a boolean value. If the argument isa
simple variable reference and the referenced variable does not
exist, the function will return false rather than raising an error.

is_defined(3)

Check if the argument isavalue other than nul | or undef . If
the argument is a simple variable reference and the referenced
variable does not exist, the function will return false rather than
ralsing an error.

is_double(3)

Check if the argument is a double value. If the argument isa
simple variable reference and the referenced variable does not
exigt, the function will return false rather than raising an error.

is list(3)

Check if the argument isalist. If the argument isasimple
variable reference and the referenced variable does not exist, the
function will return false rather than raising an error.

is_long(3)

Check if the argument isalong value. If the argument isa
simple variable reference and the referenced variable does not
exist, the function will return false rather than raising an error.

Is nlist(3)

Check if the argument is an nlist. If the argument isasimple
variable reference and the referenced variable does not exist, the
function will return false rather than raising an error.

is null(3)

Check if theargument isanul | . If the argument isasimple
variable reference and the referenced variable does not exist, the
function will return false rather than raising an error.

is_number(3)

Check if the argument is either along or double value. If the
argument is asimple variable reference and the referenced
variable does not exist, the function will return false rather than
raising an error.

Is_property(3)

Check if the argument is a property (long, double, or string). If
the argument is a simple variable reference and the referenced
variable does not exist, the function will return false rather than
raising an error.

IS _resource(3)

Check if the argument isalist or nlist. If the argument isa
simple variable reference and the referenced variable does not
exist, the function will return false rather than raising an error.

Functions | 34

IS _string(3)

Check if the argument isa string value. If theargument isa
simple variable reference and the referenced variable does not
exist, the function will return false rather than raising an error.

Table 6.6. Type Conversion Functions

to_boolean(3)

Convert the argument to a boolean. Any number other than O
and 0.0ist r ue. The empty string and the string 'false’ (ignoring
case) return f al se. Any other string will returnt r ue. If the
argument is aresource, an error will occur.

to_double(3)

Convert the argument to a double value. Strings will be parsed
to create adouble value; any literal form of adoubleisvalid.
Boolean values will convertto 0. 0 and 1. O for f al se

andt r ue, respectively. Long values are converted to the
corresponding double value. Double values are unchanged.

to_long(3)

Convert the argument to along value. Strings will be parsed

to create along value; any literal form of along isvalid (e.g.
hex or octal literals). Boolean values will convert to 0 and 1 for
fal seandtr ue, respectively. Double values are rounded to
the nearest long value. Long values are unchanged.

to_string(3)

Convert the argument to a string. The function will return a
string representation for any argument, including list and nlist.

Table 6.7. Miscellaneous Functions

clone(3)

Create a deep copy of the given value.

delete(3)

Delete alocal variable or child of alocal variable.

exists(3)

Return true if the given argument exists. The argument can
either be avariable reference, path, or template name.

path_exists(3)

Return true if the given path exists. The argument must be an
absolute or external path.

if exists(3)

For a given template name, return the template name if it
exists or undef if it does not. This can be used with the include
statement for a conditional include.

return(3)

Interrupt the normal flow of processing and return the given
value as the result of the current frame (either afunction call or
the main DML block).

value(3)

Retrieve the value associated with the given path. The path may
either be an absolute or external path.

Functions | 35

User-Defined Functions

The pan language permits user-defined functions. These functions are essentially
a DML block bound to an identifier. Only one DML block may be assigned to a
given identifier. Attempts to redefine an existing function will cause the execution
to be aborted. The syntax for defining afunction is:

function identifier = DM
wherei denti fi er isavalid panidentifier and DML isthe block to bind to it.

When the function is called, the DML will have the variables ARGC and ARGV
defined. The variable ARGC contains the number of arguments passed to the
function; ARGV is alist containing the values of the arguments.

Note that ARGV is a standard pan list. Consequently, passing null values (intended
to delete elements) to functions can have non-obvious effects. For example, the call:

f(null);

will result is an empty ARGV list because the null value deletes the nonexistent
element ARGV[0] .

The pan language does not check the number or types of arguments automatically.
The DML block that defines the function must make all of these checks explicitly
and usetheer r or function to emit an informative message in case of an error.

Recursive calls to a function are permitted. However, the call depth is limited (by
an option when the compiler isinvoked) to avoid infinite recursion. Typically, the
maximum isasmall number like 10. Recursion isexpensive within the pan language
and should be avoided if possible.

The following example defines a function that checks if the number of arguments
iseven and are all numbers:

function paired_nunbers = {

if (ARG !'= 0) {
error (' nunber of argunents nust be even');

)i

foreach (k, v, ARGQV) {

if (! is_nunmber(v)) {

error (' non-nuneric argunent found');
H
Ik

'ok';

Functions | 36

CHAPTER 7

Validation

The greatest strength of the pan language is the ability to do detailed validation of
configuration parameters, of correlated parameters within a machine profile, and of
correlated parameters between machine profiles. Although the validation can make
it difficult to get a particular machine profile to compile, the time spent getting a
valid machine configuration before deployment more than makes up for the time
wasted debugging a bad configuration that has been deployed.

Forcing Validation

Simple validation through the validation of primitive properties and simple
resources has already been covered when discussing the pan type definition features.
This chapter deals with more complicated scenarios.

The following statement will bind an existing type definition (either a built-in
definition or a user-defined one) to a path in a machine configuration:

bi nd path = type- spec;

where pat h isavalid path name and t ype- spec is either a type specification
or name of an existing type.

Full type specifications are of the form:

identifier = constant with validation-dm

where const ant isa DML block that evaluates to a compile-time constant (the
default value), and the val i dati on-dm isa DML block that will be run to
validate paths associated with this type. Both the default value and validation block
are optional. The i denti fi er can be any legal name with an optional array
specifier and/or range afterwards. For example, an array of 5 elements is written
int[5] or astring of length 5 to 10 characters string(5..10).

Validation | 37

Implicit Typing

If you worked through the previous chapters, you will have discovered that although
you have an intuitive idea of what type a particular path should contain (e.g. /

har dwar e/ cpu/ nunber should be positive long), the pan compiler does not.
The compiler will infer an element's data type from the first value assigned to it.
From then on it will enforce that type, raising an error if, for instance, a double is
replaced by astring. If necessary, theimplicit type can be removed from an element
by assigning it to undef before changing the value.

Binding Primitive Types to Paths

Downstream machine configuration tools will likely expect parameters to have
certain types, producing errors or erroneous configurations if the correct typeis not
used. One of the strengths of the pan language is to specify explicit constraints on
the element to detect problems before configurations are deployed to machines.

At the most basic level, a system administrator can tell the pan compiler that a
particular element must be aparticular type. Thisis done with thebi nd statement.
To tell the compiler that the path / har dwar e/ cpu/ nunber must be a long
value, add the following statement to the nf sser ver . exanpl e. or g example.

bi nd '/ hardwar e/ cpu/ nunber' = | ong;

This statement can appear anywhere in the file; al of the specified constraints will
be verified after the complete configuration is built. Setting this path to avalue that
isnot along or not setting the value at al will cause the compilation to fail.

The above constraint only does part of the work though; the value could still be set
to zero or anegative value without having the compiler complain. Pan also allowsa
range to be specified for primitive values. Changing the statement to the following:

bi nd '/ hardwar e/ cpu/ nunber' = long(1..);

will require that the value be a positive long value. A valid range can have the
minimum value, maximum value, or both specified. A range is always inclusive
of the endpoint values. The endpoint values must be long literal values. A range
specified asasingle value indicates an exact match (e.g. 3 isshort-hand for 3. . 3).
A range can be applied to along, double, or string type definition. For strings, the
range is applied to the length of the string.

User-Defined Types

Users can create new types built up from the primitive types and with optional
validation functions. The general format for creating anew typeis.

type identifier = type-spec;

Validation | 38

where the general form for atype specificationt ype- spec isgiven above.

Probably the easiest way to understand the type definitions is by example. The
following are "alias" types that associate a new name with an existing type, plus
some restrictions.

type ulongl = long with SELF >= 0;

type ul ong2 = |l ong(0..);

type port = [ong(0..65535)

type short_string = string(..255);
type small _even = long(-16..16) with SELF %2 == 0

Similarly one can create link types for elements in the machine configuration:

type nmylink = long(0..)* with match(SELF, 'r$');

Values associated to this type must be a string ending with 'r'; the value must be a
valid path that references an unsigned long value.

Slightly more complex isto create uniform collections:

type long_list = 1ong[10];

type matrix = long[3][4];

type doubl e_nlist = double{};

type small _even_nlist = small_even{};

Here al of the elements of the collection have the same type. The last example
shows that previously-defined, user types can be used as easily as the built-in
primitive types.

A record is an nlist that explicitly names and types its children. A record is by far,
the most frequently encountered type definition. For example, the type definition:

type cpu = {
‘vendor' : string
‘model ' : string
‘speed' : double

‘fpu' ? bool ean

b

definesan nlist with four children named 'vendor', 'model’, etc. Thefirst threefields
useacolon (":") in the definition and are consequently required fields; the last uses
aquestion mark ("?") and is optional. As defined, no other children may appear in
nlists of thistype. However, one can make the record extensible with:

type cpu = extensible {

‘vendor' : string

‘model ' : string

'speed' : double

‘fpu’ ? bool ean

b

Thiswill check thetypes of 'vendor’, 'model’, etc., but will also allow children of the
nlist with different unlisted namesto appear. This provides somelimited subclassing
support. Each of the types for the children can be afull type specification and may
contain default values and/or validation blocks. One can also attach default values
or validation blocksto the record as awhole.

Validation | 39

Default Values

Looking again at the nf sserver. exanpl e. or g configuration, there are a
couple of places where we could hope to use default values. The pxeboot and
boot flags in the nic and disk type definitions could use default values. In both
cases, at most onevaluewill besettot r ue; al other valueswill besettof al se.
Another place one might want to use default values isin the cpu type; perhaps we
would like to have nunber and cor es both default to 1 if not specified.

Pan allows type definitions to contain default values. For example, to change the
three type definitions mentioned above:

type cpu = {
‘nmodel* : string
' speed' : doubl e(0..)
‘arch' : string
‘cores' : long(1l..) =1
"nunber’ : long(l..) =1
iE
type nic = {
‘mac' : string
' pxeboot' : bool ean = fal se
iE
type disk = {
‘label' ? string
‘capacity' : long(1l..)
‘boot' : bool ean = false

b

With these definitions, the lines which set the pxeboot and boot flags to false
can be removed from the configuration and the compiler will still produce the same
result. The default value will only be used if the corresponding element does not
exist or has the undef value after all of the statements for an object have been
executed. Consequently, avaluethat has been explicitly defined will always be used
in preference to the default. Although one can set a default value for an optional
fieldin arecord, it will have an effect only if the value was explicitly set toundef .

The default values must be a compile time constants.

Advanced Parameter Validation

Often there are cases where the legal values of a parameter cannot be expressed as
asimplerange. The pan language allows you to attach arbitrary validation codeto a
type definition. The codeisattached to the type definition using thewi t h keyword.
Consider the following examples:

type even_positive long = long(l..) with (SELF % 2 == 0)

type machi ne_state_enum = string
with mat ch(SELF, ' open|cl osed|drain')

Validation | 40

type ip = string with is_ipv4(SELF);

The validation code must return the boolean valuet r ue, if the associated value is
correct. Returning any other value or raising an error with theer r or function will
cause the build of the machine configuration to abort.

Simple constraints are often written directly with the type statement; more
complicated validation usually calls a separate function. The third line in the
example above callsthefunctioni s_i pv4, which wasdefined in the next section.

Validation Functions

To smplify type definitions, validation functions are often defined. These are
user-defined functions defined using the standard function statement. They can
be referenced within a type definition just as they would be in any DML block.
However, validation functions must return aboolean value or raise an error with the
err or function. A validation function that returns a non-boolean value will abort
the compilation. Similarly, a validation function that returns f al se will raise an
error indicating that the value for the tested element isinvalid.

A validation function that checksthat avalueisavalid | Pv4 address could ook like:

function is_ipvd = {

terns = split('\.", ARGV[O]);
foreach (index; term terns) {
i =to_long(term;
if (i <0]| i > 255) {

return(fal se);
H

Ik

true;

b

A real version of thisfunction would probably do agreat deal more checking of the
value and probably raise errors with more intuitive error messages.

Validation of Correlated Configuration
Parameters

Often the correct configuration of amachine requiresthat configuration parameters
in different parts of the configuration are correlated. One example isthe validation
of the pre- and post-dependencies of the component configuration. It makesno sense
for one component to depend on another one that is not defined in the configuration
or isnot active.

The following validation function accomplishes such a check, assuming that the
components are bound to / sof t war e/ conponent s:

function valid_conponent _|ist = {

Validation | 41

ARGV[0] should be the list to check

Check that each referenced conponent exists
foreach (k; v; ARGV 0]) {

Path to the root of the nanmed conponent
path = '/software/conponents/' + v;

if (lexists(path)) {
error(path + ' does not exist')
} else {

Path to the active flag for the named conponent
active_path = path + '/active';

if (!(is_defined(active_path) && value(active_path))) {
error('conmponent ' + v + ' isn't active')

Ji

iE
type conmponent _|ist = string[] with valid_conponent_|ist(SELF);

type conponent = extensible {
active : boolean = true
pre ? conponent |i st

post ? conponent _|i st

b

It also defines a component_list type and uses this for a better definition of a the
component type. This will get run on anything that is bound to the component
type, directly or indirectly. Note how the function looks at other values in the
configuration by creating the path and looking up the values with the val ue
function.

The above function works but has one disadvantage: it will only work for
components defined below / sof t war e/ conponent s. If thelist of components
is defined elsewhere, then this schema definition will have to be modified. One can
usually avoid this by applying the validation to a common parent. In this case, we
can add the validation to the parent.

function valid_conponent _nlist = {

Loop over each conponent.
foreach (nane; conponent; SELF) {

if (exists(conponent['pre'])) {
foreach (index; dependency; conponent['pre']) {
if (!exists(SELF[' dependency']['active'] ||
SELF[' dependency'][active'])) {
error (' non-existant or inactive dependency:
+ dependency)

... same for post ...

Validation | 42

type conponent = extensible {
active : bool ean = true;
pre ? string[]

post ? string[]

b

type conponent _nlist = conponent{} with valid_conponent _nlist(SELF);

Thiswill accomplish the same validation, but will be independent of thelocationin
the tree. It is, however, significantly more complicated to write and to understand
the validation function. In the real world, the added complexity must be weighed
against the likelihood that the type will be re-located within the configuration tree.

The situation often arisesthat you want to validate aparameter against other siblings
in the machine configuration tree. In this case, we wanted to ensure that other
components were properly configured; to know that we needed to search "up and
over" in the machine configuration. The pan language does not allow use of relative
paths for the val ue function, so the two options are those presented here. Use an
absolute path and reconstruct the paths or put the validation on a common parent.

Cross-Machine Validation

Another common situation is the need to validate machine configurations against
each other. This often arises in client/server situations. For NFS, for instance, one
would probably like to verify that a network share mounted on a client is actually
exported by the server. The following example will do this:

Determ ne that a given nounted network share is actually
exported by the server.
function valid_export = {

info = ARGV[O] ;
nmyhost = info['host'];
mypath = info['path'];

exports_path = host + ':/software/conponents/nfs/exports';

found = fal se;
i f (path_exists(exports_path)) {

exports = val ue(exports_path);

foreach (index; einfo; exports) {
if (einfo['authorized host'] == nyhost &&
einfo['path'] == nypath) {
found = true;
IE
H

} o

f ound;

Validation | 43

Defines path and authorized host for NFS server export.
type nfs_exports = {

‘path' : string

"aut hori zed_host' : string

}s

Type containing paraneters to nount renote NFS vol une.
type nfs_nounts = {

"host' : string

‘path' : string

‘mountpoint' : string
} with valid_export (SELF)

Allows |ists of NFS exports and NFS nounts (both optional)
type config_nfs = {

i ncl ude conponent

"exports' ? nfs_exports[]

"mounts' ? nfs_nounts[]

) 5

To do this type of validation, the full external path must be constructed for the
val ue function. This has the same disadvantage as above in that if the schemais
changed the function definition needs to be atered accordingly. The above code
also assumes that the machine profile names are equivalent to the hostname. If
another convention is being used, then the hostname will have to be converted to
the corresponding machine name.

It is worth noting that all of the validation is done after the machine configuration
treesarebuilt. Thisallowscircular validation dependenciesto be supported. That is,
clients can check that they are properly included in the server configuration and the
server can check that its clients are configured. A batch system isatypica example
where this circular cross-validation is useful.

Schemas

The pan language allows complete configuration schema to be defined. Actually,
you are capable of doing this aready as defining a schema is nothing more than
defining atype and binding that type to the root element. An example of thisis:

obj ect tenpl ate schema_exanpl e;
include { 'type_definitions' }
type schema = {

‘software' : software_type

‘hardware' : hardware_type

' packages' : packages_type
bind '/' = schema

Actual definitions of paraneters
...

In this fictitious example, the concrete types would be defined in the included file
and the template would actually define the configuration parameters.

Validation | 44

CHAPTER 8

Modular Configurations

Defining the configuration for a machine with many services, let alone afull site,
quickly involves alarge number of parameters. Often subsets of the configuration
can be shared between services or machines. To minimize duplication and
encourage sharing of configurations, the pan language has features to allow
modularization of the configuration.

Include Statement

So far only the hardware configuration and schema for one machine has been
defined with the nf sser ver . exanpl e. or g configuration. One could imagine
just doing a cut and paste to create the other three machinesin our scenario. While
thiswill work, the global site configuration will quickly become unwieldy and error-
prone. In particular the schema is something that should be shared between all or
many machines on asite. Multiple copies means multiple copies to keep up-to-date
and multiple chances to introduce errors.

To encourage reuse of the configuration and to reduce maintenance effort, pan
allows one template to include another (with some limitations). For example,
the above schema can be pulled into another template (named conmon/
schema. t pl) and included in the main object templ ate.

decl aration tenpl ate comon/ scheng;

type location = extensible {

‘rack' : string
‘slot' : long(O0..50)
IE
type cpu = {
‘nmodel ' : string
‘speed' : doubl e(0..)
‘arch' : string
‘cores' : long(1l..)
"nunber’ : long(1..)

}s

type disk = {

Modular Configurations | 45

‘label® ? string
‘capacity' : long(1l..)
‘boot' : bool ean

i

type disks = {
"ide' ? disk[]
‘scsi' ? disk{}

i ;

type nic = {
‘mac' : string
' pxeboot' : bool ean

i ;

type hardware = {
‘location' : |ocation
‘ram : long(0..)
‘cpu' : cpu
"di sks' : disks
‘nic' : nic[]

}s
type root = {
"hardware' : hardware
b
The main object template then becomes:
obj ect tenpl ate nfsserver. exanpl e. org;
i ncl ude ' common/ schema' ;
bind '/' = root;

'/ har dwar e/ | ocat i on/ r ack’

' | BMD4'
'/ har dwar e/ | ocat i on/ sl ot"' ;

25;

"/ hardwar e/ ram = 2048;

'/ har dwar e/ cpu/ nodel ' "Intel Xeon';
' [har dwar e/ cpu/ speed' 2.5;

"/ hardwar e/ cpu/ arch’ = 'x86_64";

'/ har dwar e/ cpu/ cor es’ 4;

'/ har dwar e/ cpu/ nunber' = 2;

"/ har dwar e/ di sk/ i de/ O/ capacity' = 64;

" har dwar e/ di sk/ i de/ 0/ boot' = true;

'/ hardwar e/ di sk/ide/0/] abel' = 'systeni;
"/ har dwar e/ di sk/ i de/ 1/ capacity' = 1024;
"/ hardwar e/ di sk/ i de/ 1/ boot' = fal se;

"/ hardwar e/ ni ¢/ 0/ mac' = ' 01: 23: 45: ab: cd: 99' ;
'/ har dwar e/ ni ¢/ O/ pxeboot' = fal se;

"/ hardwar e/ ni ¢/ 1/ mac' = ' 01: 23: 45: ab: cd: 00" ;
"/ hardwar e/ ni ¢/ 1/ pxeboot' = true;

There are three important changes to point out.

Firgt, there is a new pan statement in the nf sser ver . exanpl e. or g template
to include the schema. The include statement takes the name of the template to
include as a string; the braces are mandatory. If the template is not included directly
on the command line, then the compiler will search the loadpath for the template.
If the loadpath is not specified, then it defaults to the current working directory.

Modular Configurations | 46

Second, the schema has been pulled out into a separate file. The first line of that
schema template is now marked as a decl ar at i on template. Such a template
can only include type, variable, and function declarations. Such atemplate will be
included at most once when building an object; al inclusions after the first will
be ignored. This allows many different template to reference type (and function)
declarations that they use without having to worry about accidentally redefining
them.

Third, the schematemplate nameiscommon/ scherma and must belocated in afile
called cormon/ schena. pan; that is, it must be in a subdirectory of the current
directory called comon. Thisis called nhamespacing and allows the templ ates that
make up a configuration to be organized into subdirectories. For the few templates
that are used here, namespacing is not critical. It is, however, critical for real sites
that are likely to have hundreds or thousands of templates. Note that the hierarchy
for namespacesis compl etely independent of the hierarchy used in the configuration
schema.

Pulling out common declarations and help maintain coherence between different
managed machines and reduce the overall size of the configuration. There are
however, more mechanisms to reduce duplication.

Structure Templates

Sites usually buy many identical machines in a single purchase, so much of the
hardware configuration for those machines is the same. Another mechanism that
can be exploited to reuse configuration parametersisast r uct ur e template. Such
a template defines an nlist that is initially independent of the configuration tree
itself. For our scenario, let us assume that the four machines have identical RAM,
CPU, and disk configurations; the NIC and location information is different for
each machine. The following template pulls out the common information into a
struct ur e template:

structure tenpl ate comron/ machi ne/i bm server - nodel - 123;

'ram = 2048;

"cpu/nmodel’ = 'Intel Xeon';
'cpu/ speed' = 2.5;
‘cpu/arch' = 'x86_64";
'cpu/cores' = 4;

' cpu/ nunber' = 2;

"di sk/ide/0/capacity' = 64;

" di sk/ide/0/boot' = true;
"disk/ide/0/]label' = "'systeni;
"di sk/idel/ 1/ capacity' = 1024;
" disk/ide/ 1/ boot' = fal se;

"l ocation' = undef;
'nic' = undef;

Modular Configurations | 47

The structure template is not rooted into the configuration (yet) and hence al of the
paths in the assignment statements must be relative; that is, they do not begin with
adlash. Also, thel ocat i on and ni ¢ children were set to undef . These are the
values that will vary from machine to machine, but we want to ensure that anyone
using this template sets those values. If someone uses this template, but forgets to
set those values, the compiler will abort the compilation with an error. The undef
value may not appear in afinal configuration.

How isthisused in the machine configuration? Theinclude statement will not work
because we must indicate where the configuration should be rooted. The answer is
to use an assignment statement along with the cr eat e function.

obj ect tenpl ate nfsserver.exanpl e. org;

include ' conmon/ schema' ;

bind '/' = root;

'/ hardware' = create(' common/ nachi ne/i bm server-nodel -123");
"/ hardwar e/l ocation/rack' = "'I|1BWM4';

'/ hardwar e/l ocati on/ sl ot' = 25;

"/ hardwar e/ ni ¢/ 0/ mac' = ' 01: 23: 45: ab: cd: 99' ;

'/ har dwar e/ ni ¢/ O/ pxeboot' = fal se;

"/ hardwar e/ ni ¢/ 1/ mac' = ' 01: 23: 45: ab: cd: 00" ;

"/ hardwar e/ ni ¢/ 1/ pxeboot' = true;

Finally, the machine configuration contains only values that depend on the machine
itself with common values pulled in from shared templates.

Although the exampl e here uses the hardware configuration, in reality it can be used
for any subtree that is invariant or nearly-invariant. One can even reuse the same
structure template many times in the same object just be creating a new instance
and assigning it to a particular part of the tree.

Modular Configurations | 48

CHAPTER 9

Advanced Features

This chapter discusses annotations and logging, two advanced topics that can
be used to facilitate the management of sites and better understand a site's
configuration.

Annotations

The compiler supports pan language annotations and provides a mechanism for
recovering those annotations in a separate XML file. While the compiler permits
annotationsto occur in nearly any location in asourcefile, only annotations attached
to certain syntactic elements can be recovered. Currently these are those before the
template declaration, variable declarations, function declarations, type declarations,
and field specifications. Examples of all arein the examplefile.

@rai nt ai ner {

name = Jane Manager

emai | = jane. manager @xanpl e. org
}
@

Exanpl e tenpl ate that shows off the
annot ation features of the conpiler.

}

obj ect tenpl ate annot ati ons;

@se{
type = long
default =1

note = negative val ues rai se an exception

}
vari abl e VALUE ?= 1;

@locunent at i on{
desc = sinple addition of two nunbers
arg = first nunber to add
arg = second nunber to add

}

function ADD = {

ARGV[0] + ARGV[1] ;
b

type EXTERN = {
"info' ? string

Advanced Features | 49

i

@locunent at i on{
Sinpl e definition of a key val ue pair.

}
type KV_PAIR = extensible {

@ addi tional infornation fields}
i ncl ude EXTERN

@key for pair as string}
'key' : string

@value for pair as string}
‘value' : string = to_string(2 + 3)

b
bind '/pair' = KV_PAR;
'/add'" = ADD(1, 2);

'/ pair/key' ="'KEY';
"/ pair/value' = "'VALUE ;

The command will produce one output file for each source file, using the directory
hierarchy of the source files, not the namespace hierarchy. When processing the
files, you must provide both the desired output directory (which must exist) using
the - - out put - di r option, aswell astheroot file system directory for al of the
processed files with the - - base- di r option. Using the following command to
process thefile:

$ panc-annot ati ons \
--out put -di r=annot ati ons \
--base-dir=. \
annot at i ons. pan

will produce the following output in the file
annot ati ons. pan. annot ati on. xm (with whitespace and indentation
added for clarity).

<?xm version="1.0" encodi ng="UTF- 8" ?>
<tenpl ate xm ns="http://quattor.org/pan/annotations"
nane="annot ati ons"
type="OBJECT" >
<desc>
Exanpl e tenplate that shows off the
annot ation features of the conpiler.
</ desc>

<mai nt ai ner >

<nane>Jane Manager </ nane>

<emui | >j ane. manager @xanpl e. or g</ emai | >
</ mai nt ai ner >

<vari abl e name="VALUE" >
<use>
<t ype>l ong</t ype>
<def aul t >1</ def aul t >
<not e>negative val ues rai se an exception</not e>
</ use>
</vari abl e>

<functi on nane="ADD'>
<docunent at i on>

Advanced Features | 50

<desc>si npl e addi ti on of two nunbers</desc>
<arg>first number to add</arg>
<ar g>second nunber to add</arg>

</ docunent at i on>

</function>

<type nanme="EXTERN'>

<baset ype extensi bl e="no">

<field nanme="info" required="no">
<baset ype name="string" extensibl e="no"/>
</field>

</ baset ype>
</type>

<type nanme="KV_PAIR'>

<docunent at i on>

<desc>

Sinple definition of a key val ue pair.

</ desc>

</type>

</ docunent at i on>

<baset ype extensi bl e="yes">

<i ncl ude nanme="EXTERN'/ >

<field name="key" required="yes">
<desc>key for pair as string</desc>
<baset ype nane="string" extensible="no"/>

</field>

<field name="val ue" required="yes">
<desc>val ue for pair as string</desc>
<baset ype name="string" extensibl e="no"/>

</field>

</ baset ype>

<baset ype nanme="KV_PAI R' extensi bl e="no"/>

</tenpl at e>

The output filenameincludesthe full input filename because variants with different
suffixes may be present.

Logging

It is possible to log various activities of the pan compiler. The types of logging that
can be specified are:

task

call

include

Task logging can be used to extract information about how long the
various processing phases last for a particular object template. The
build phases one will seein the log file are: execute, defaults, validl,
valid2, xml, and dep. There is also a build stage that combines the
execute and defaults stages.

Call logging alows the full inclusion graph to be reconstructed,
including function calls. Each include is logged even if the include
would not actually include a file because the included file is a
declaration or unigue template that has already been included.

Include logging only logs the inclusion of templates and does not log
function calls.

Advanced Features | 51

memory Memory logging show the memory usage during template processing.
This can be used to see the progression of memory utilization and can
be correlated with other activitiesif other types of logging are enabled.

al Turns all types of logging on.
none Turns all types of logging off.

Note that alog file name must also be specified, otherwise the logging information
will not be saved.

Thelogging information can be used to understand the performance of the compiler
and find bottlenecks in the configuration. It can also be used to extract information
about the relationships between templates, which are then commonly passed to
visualization tasks to allow a better understanding of the configuration. Many
examples are included in the distribution as analysis scripts. See the command
reference appendix for details.

Build Metadata

It is sometimes useful to be able to inject values into the compiled profiles without
having to explicitly include atemplate into each object template. Thisisparticularly
appropriate for metadata like build numbers, build times, build machines, etc. This
can be achieved by setting the root element that is used to start the build of all
profiles. Use the r oot El enent attribute for ant and the - - r oot - el enent

option for the command line. The value must be a DML expression that evaluates
to an nlist. For example, this expression

nlist('build-metadata', nlist('nunber', 1, 'date', '2012-01-01'))
would result in having the paths / bui | d- net adat a/ nunber, / bui | d-

nmet adat a/ dat e being set to 1 and 2012- 01- 01, respectively, in al object
templates.

Caution

Values inserted into the profiles in this way are still subject to the usua
validation. When inserting values, they must obey the schema you have
defined for the profile.

Advanced Features | 52

CHAPTER 10

Performance Considerations

As configurations become larger, the speed at which the full configuration can
be compiled becomes important. The logging features presented in the previous
chapter can help identify slow parts of the compilation for you particular
configuration. This chapter contains general advice on making the compilation as
quick as possible.

Use Specific Paths

Whenever possible, use the most specific path and assign a property to that path.
The code:

"/path* =nlist('a, 1, 'b', 2);

and the block:
"/path/a" = 1;
"/path/b" = 2;

provide identical results, although the second exampleis easier to read and will be
better optimized by the compiler.

Use Escaped Literal Path Syntax

In previous versions of the compiler, it was necessary to use a DML block when
part of a path needed to be escaped:

"/path' = nlist(escape('a/b'), 1);

Newer versions of the compiler provide a literal path syntax in which escaped
portions can be written explicitly:

‘/path/{a/b}' = 1;

Thisis both more legible and faster.

Performance Considerations | 53

Use Built-In Functions

Built-in functions are significantly faster than equivalents defined with the pan
language. In particular, the functions append and pr epend should be used for
incrementally building up lists (in preference to push equivaents). There are
also functionsliket o_upper case andt o_| ower case that avoid character by
character manipulation of strings.

The list of available built-in functions continues to expand. Check the list of
functions with each new release of the compiler.

Invoking the Compiler

There are several ways to invoke the compiler, either from the command line,
from ant, or from maven. For single, infrequent invocations of the compiler they
are roughly equivalent in startup time. However, if the compiler will be invoked
frequently it is better to avoid using the command line panc script. The reason for
thisisthat the panc script startsanew JVM each timeit isinvoked, whilethe ant and
maven invocations can reuse their own JVM. This means that for the panc script,
you will pay the startup costs each time it is invoked while for ant or maven you
pay it them only once. The startup costs are particularly expensive if you request a
large amount of memory and do hundreds of compilations at atime.

Avoid Copying SELF

Assignments of SELF to alocal variable inside of a code block will cause a deep
copy of SELF. In the following code, the local variable copy will contain a
complete replica of SELF.
"/path' = {

copy = SELF;
copy,
i ;
These copies can be time-consuming when SELF is a large resource or when the
code is executed frequently. If you manipulate SELF within a code block, always
reference SELF directly.

Also beawarethat copy and SELF will contain independent copies so that changes
to copy to not affect SELF and vice versa. This can lead to bugs that are difficult
to find.

Performance Considerations | 54

CHAPTER 11

Common ldioms

As you use the pan configuration, you will discover certain idioms which appear.
This chapter describes some of the common idioms so that you can take advantage
of them from the start and not need to rediscover them yourself.

Configuration File Templates

Although it is much better to create an abstracted schemafor service configuration,
practicaly it is often useful to directly embed a configuration file directly in the
service configuration. In previous versions of the compiler, the configuration file
was often created incrementally in a global variable and then assigned to a path.
Something like the following was common:

variable USER = 'smth';
vari abl e QUOTA = 10;

vari abl e CONTENTS = <<ECF;
alpha = 1

beta = 2

ECF

vari abl e CONTENTS = CONTENTS +
'user ="' + USER + "\n";

vari abl e CONTENTS = CONTENTS +
‘quota = ' + to_string(QUOTA) + "\n";

"/cfgfile' = CONTENTS;

This can be improved somewhat by using the f or mat function:

variable USER = 'smth';
vari abl e QUOTA = 10;

vari abl e CFG TEMPLATE = <<ECF;
alpha = 1

beta = 2

user = %

quota = %l

Common Idioms | 55

ECF

"/cfgfile = format(CFG TEMPLATE, USER, QUOTA);

This can be further improved by moving the configuration template completely out
of the pan language file. For instance, create thefilecf g-t enpl at e. t xt :
alpha = 1

beta = 2

user = %
quota = %l

which can then be used like this;

variable USER = 'smith';
vari abl e QUOTA = 10;

"/cfgfile' = format(file_contents('cfg-tenplate.txt'),
USER, QUOTA) ;

Thisismuch easier toread and to maintain. It isespecially hel pful when theincluded
configuration file has a syntax for which an external editor can provide additional
help with validation.

Extension Templates

Often sets of templates that are intended for reuse will allow the configuration to
be extended or modified at particular points by including named templates. For
example, the following provides pre-configuration and post-configuration service
hooks:

tenpl ate nmy_service/ confi g;

include if_exists(' ny_servicel/prehook');
bul k of real service configuration
include if_exists('ny_service/posthook');

In both of these cases, the named templates will be included if they can be found
on the loadpath. If they are not found, the includes do nothing.

Global Variables as Switches

Configuration intended for reuse also tends to expose switches for common
configuration options. The idiom looks like the following:

tenpl ate nmy_service/ confi g;
vari abl e MY_OPTI ON ?= f al se;

"I ny_servicel/config/my_option' =
if (MY_OPTION) {
'some val ue';
} else {
'some ot her val ue';

Common Idioms | 56

}
b

In cases where the path ssmply should not exist if the option is not set, then using
adefault value of null can be the best option:

tenpl ate nmy_service/ confi g;

variable MYy_OPTION ?= nul | ;

"/ my_servicel config/ny_option' = MY_OPTI ON,

Inthiscase, if the variable MY _OPTION is not set to avalue before executing this
template, the null value will be used and the given path will ssmply be deleted.

Tri-state Variables

Occasionadly isis useful to have tri-state variables. The most convenient values to
useinthiscasearet r ue, f al se, and nul | . With these values asthe three states,
you canusei s_nul | to test explicitly for the third state. Using undef for the
third value can cause problems because variables are automatically set to undef
before executing a variable assignment statement.

Common Idioms | 57

CHAPTER 12

Troubleshooting

Compilation Problems

In a production environment, the number of templates and their complexity will be
must greater. Often something goes wrong with the compilation or build resulting
in one or more errors appearing on the console (standard error stream). There are

four categories of errors:

Syntax Error

Evaluation Error

Validation Error

System Error

These include any errors that can be caught during the
compilation of a single template. These include lexing,
parsing, and syntax errors, but also semantic errors like
absolute assignment statements appearing in a structure
template that can be caught at compilation time.

These are the most common; these include any error
that happens during the "execution™ phase of processing
likemathematical errors, primitivetype conflicts, and the
like. Usually the name of the template and the location
where the error occurred will be included in the error

message.

Validation errors occur during the "validation” phase
and indicate that the generated machine profile violates
the defined schema. Information about what type
specification was violated and the offending path will be
included in the error message.

These include low-level problemslike problems reading
from or writing to the file system.

In general, the errors try to indicate as precisely as possible the problem. Usually
the name of the source file as well as the location inside the file (line and

Troubleshooting | 58

column numbers) are indicated. For most evaluation exceptions, atraceback isalso
provided. Validation errors are the most terse, giving only the element causing the
problem and the location of the type definition that has been violated.

Thereisone further class of errors called "compiler errors'. These indicate an error
in the logic of the compiler itself and should be accompanied by a detailed error
message and a Java traceback. All compiler errors should be reported asabug. The
bug report should include the template that caused the problem along with the full
Javatraceback. Hopefully, you will not encounter these errors.

Common Problems

1.1. "JavaHeap Space" warnings appear on console.

If you see messages that refer to "Java Heap Space" while running the
compiler, then the java virtual machine does not have enough memory to
compile the given templates. You must increase the amount of memory
alocated to the java virtual machine when you start the compiler. See the
section Running the Compiler for how to specify the VM memory.

1.2. Thecompilation is extremely slow.

If the compilation appears to be slow, check that the compiler is not
thrashing because of alimited amount of memory. With the verbose option
set, successful compilations will produce a summary like:

2 tenpl ates

2/ 2 conpiled, 2/2 xm, 0/0 dep
0 errors, 166 ns, 0 MB/63 MB heap, 12 MB/ 116 MB nonheap

The last line with gives the maximum amount of heap memory used and
the maximum available (the value marked "heap"). If the maximum used is
more than about 80% of the maximum available, then you should consider
increasing the memory allocated to the javavirtual machine. See the section
Running the Compiler for how to specify the VM memory.

1.3. "missing modifyThread Permission” warnings appear on console.

Thejava-implementation of the pan language compiler is completely multi-
threaded. Internally, it controls several thread pools to handle compilation,
execution, and serialization in parallel. At the end of a compilation, the
compiler will normally destroy the thread pools that were created. The java
security model requiresthat aprogram have the "modify Thread" permission
to destroy threads. In some environments (notably Eclipse), this permission
may not be given to the compiler. If this is the case, then the message
"WARNING: missing modifyThread permission” is printed on the standard
error. Lacking this permission causes a "thread leak", but the effects are

Troubleshooting | 59

minor unless an extremely large number of templates are being compiled.
If thisis the case, then you should either change the configuration to grant
this permission to the compiler, or work in an environment that grantsit by
default (e.g. using ant from the command line).

This problem isfixed if using Java6. If you have several JREsinstalled, be
sure to configure Eclipse to use Java 6. Go to Window _ Preferences _
Java _, Installed JREs. If you don't see the JRE you want (and you have it
installed), use the "Search" button to have eclipse configure the new JRE
for you. Make sure you select it after it is found.

1.4. Unnecessary rebuild of clusters

It can happen that a cluster is always rebuilt when you run ant, even if there
was no change in the dependencies. In this case, you may suspect a Java
issue with optimizations enabled by default (JIT). The only workaround is
to disabl e these optimizations by adding the option -Xint to Java VM when
running ant. It is achieved differently depending how you started ant:

* From command line: define environment variable ANT_OPTS.

+ From Eclipse: right click on build.xml in ant pane, choose Run As... _
External Tools... and then click on JRE tab. Be sureto use a separate JRE
(if possible Java 6 or later) and add option in the options area.

This problem has been seen on Windows only, with Java 5 and Java 6.
Bug Reporting

The pan compiler, likeall software, contains bugs. If the problem your experiencing
looks to be misbehavior by the compiler, please report the problem. Bug reports
can be filed in the standard Quattor bug tracking system on SourceForge. When
submitting a bug, please use the following options to be sure that the bug is noticed
as soon as possible.

Project: quattor

Cat egory: panc
Assi gned to: |oomn sc

to ensure that the bug is treated as soon as possible. Bug fixes are generally rolled
into the next planned release. Mgjor releases are scheduled every six months. Bug
fix releases are planned monthly, if needed.

Troubleshooting | 60

APPENDIX A

Obtaining the Compiler

Binary Distributions

Binary packages for all releases are available from SourceForge in a variety of
formats:

http://sourceforge. net/projects/quattor/files/

The same location also contains documentation for the compiler. This document is
also bundled in the distribution files.

Source

The source for the pan compiler is managed through a git repository. The software
can be checked out with the following command:

git clone git://quattor.git.sourceforge. net/gitroot/quattor/quattor/pan

This provides a read-only copy of the pan repository. If you need write access to
the repository, consult the SourceForge documentation to find how to checkout a
hosted git repository with write access. Y ou will need to be amember of the Quattor
SourceForge project.

The master branch is the main development branch. Although an effort is made
to ensure that this code functions correctly, there may be times when it is broken.
Released versions can be found through the named branches and tags. Use the git
commands:

git branch -r
git tag -1

to see the available branches and tags.

Obtaining the Compiler | 61

Building

Correctly building the Java-implementation of the pan compiler requires version
1.5.0 or later of a Java Development Kit (JDK). Many linux distributions include
the GNU implementation of Java. The GNU implementation cannot build or run
the pan compiler correctly. Full versions of Java for linux, Solaris, and Windows
can be obtained from Oracle. Maven can be obtained from the Apache Foundation
web site.

The build of the compiler is done via Apache Maven that also depends on Java.
For Maven to find the correct version of the compiler, the environment variable
JAVA HOME should be defined:

export JAVA HOVE=<path to java area>

or
setenv JAVA HOME <path to java area>

depending on the type of shell that you use. After that, the entire build can be
accomplished with:

m/n cl ean package

where the current working directory is the root of the directory checked out from
subversion. The default build will compile al of the java sources, run the unit tests,
and package the compiler. Tarballs (plain, gzipped, and bzipped) as well as a zip
file are created on all platforms. The build will also create an RPM on platforms
that support it. The final packages can be found inthet ar get subdirectory.

Note

Current builds of the compiler are done with Maven 2.2.1. The builds have
not yet been tested with the Maven 3 releases.

Installation

The proper installation of the pan compiler depends on how it will be used. If it will
be used from the command line (either directly or through another program), then
the full installation from a binary package should be done. However, if the compiler
will be run viaant, then one really only needsto install the panc. j ar file.

Full Package Installation

Once you have a binary distribution of the compiler (either building it from
source or downloading a pre-built version), installation of the java compiler

Obtaining the Compiler | 62

should be relatively painless. The binary packages include the code, scripts, and
documentation of the compiler.

Tarballg/Zip File. Untar/unzip the package in aconvenient area and redefine the
PATH variable to include the bi n subdirectory. Y ou should then have access to
panc and the various log file analysis scripts from the command line.

RPM. Simply using the command rpm (as root) to install the package will be
enough. The scripts and binaries will be installed in the standard locations on the
system. The RPM is not relocatable. If you need to install the compiler asaregular
user, use one of the machine-independent packages.

Using the compiler requires Java 1.5.0 or later to be installed on the system. If you
want to run the compiler from ant, then you must have ant version 1.7.0 or later
installed on your system.

Eclipse Integration

To integrate the compiler in an Integrated Development Environment (IDE) like
eclipse, only the file panc. j ar is needed, presuming that the compiler will be
called viathe ant task. Build files that reference the compiler must define the panc
task and then may use the task to invoke the compiler. See the documentation for
invoking the compiler from ant.

Obtaining the Compiler | 63

APPENDIX B

Running the Compiler

To facilitate the use of the pan configuration language compiler in different
contexts, several mechanismsfor running the compiler are supported, ranging from
direct invocation from the command line to use within build frameworks like ant
and maven.

The performance of the compiler can vary significantly depending on how the
compiler isinvoked and on what options are used. Some general pointsto keep in
mind are:

» For large builds, try to start the underlying Java Virtual Machine (JVM) only
once. That is, avoid the command line interface and instead use one of the build
framework integrations.

» The pan compiler can be memory-intensive to medium to large-scale builds. Use
the verbose output to seethe all ocated and used heap space. Increase the allocated
memory for the VM if the used memory exceeds about 80% of the total.

» Other VM optimizations and options can improve performance. Check out what
options are available with your Java implementation and experiment with those
options.

The following sections provide details on the supported mechanisms for invoking
the pan configuration language compiler.

Command Line

The compiler can be invoked from the command line by using panc. Thisis a
script, which works in Unix-like environments, that starts a Java Virtua Machine
and invokes the compiler.

The full list of options can be obtained with the - - hel p option or by looking on
the relevant man page.

Running the Compiler | 64

Using java Command

If the Java compiler class is being directly invoked via the java command, then
the option - Xnmx must be used to change the VM memory available (for any
reasonably sized compilation). For exampleto start java with 1024 MB of memory,
the following command and options can be used:

java - Xnx1024M org. quattor. pan. Conpil er [options...]

The same can be done for other options. The options are the same as for the panc
command, except that the java options parameter is not supported.

Maven

The pan compiler release contains a simple maven plug-in that will perform a pan
syntax check and build asimple set of files. The plug-inisavailablefrom the central
maven repository. To usethis, you will need to configure maven for that repository.
A maven archetypeisalso provided that can be used to generate aworking skeleton
that demonstrates the pan maven plugin.

Warning

The options of the plug-in have changed from the previous version. They
mirror those of the panc script. Details for the options are given below.

To generate a skeleton maven project from the archetype use the following
command (use the latest version of the archetype):

$ nvn archetype: generate \
- DarchetypeArti f act | d=panc- naven- ar chet ype \
- Dar chet ypeG oupl d=or g. quatt or. pan \
- Dar chet ypeVer si on=9. 3

Define value for property 'groupld : : org.exanple.pan
Define value for property 'artifactld : : nysite

Define value for property 'version': 1.0-SNAPSHOT: :
Define value for property 'package': org.exanple.pan: :

Confirm properties configuration:
groupl d: org.exanpl e. pan
artifactld: mysite
version: 1. 0- SNAPSHOT
package: org. exanpl e. pan

Y:

[INFOQ Total tine: 19.690s
[INFQ Finished at: Mon Feb 20 08:23:52 CET 2012
[INFQ Final Menory: 9M 81M

Running the Compiler | 65

As can be seen above, the processwill ask for general information about the project
that you want to create. The process should end with a"BUILD SUCCESS" and
create a subdirectory with the maven project. In the example, the subdirectory (and
artifactld) are named "mysite".

Within this subdirectory ("mysite"), you can then invoke the entire build process
by doing the following:

$ cd nysitel
$ nmvn clean install

[INFQ --- panc-maven-pl ugi n: 9. 2- SNAPSHOT: pan- check-synt ax (check-syntax) @nysite ---
[NFQ

[INFQ --- panc-nmaven-pl ugi n: 9. 2- SNAPSHOT: pan-build (build) @nysite ---

[| [NFG] =====cc=c=c=cc-co-c-co-c-coocccoocccoocccoocccoocccoocccoococoococo-coooo

[INFQ BU LD SUCCESS

[O I e T T

[INFQ Total time: 1.782s

[INFQ Finished at: Mon Feb 20 08:27:51 CET 2012

[INFQ Final Menory: 3M 81M

[I e R

Again, this should end with a "BUILD SUCCESS". It will have generated the
machine profileinthet ar get / pr of i | es/ node. exanpl e. or g. xm file

$ cat target/profiles/node. exanpl e. org. xn

<?xm version="1.0" encodi ng="UTF- 8" ?>
<nlist format="pan" nane="profile">
<list nanme="al pha">
<l ong>1</1| ong>
<l ong>2</| ong>
<l ong>3</ | ong>
<l ong>4</| ong>
</list>
<nlist name="beta">
<string name="del ta">OK</string>
<bool ean nanme="epsi |l on" >t rue</ bool ean>
<string nane="gamm">0OK</string>
<doubl e name="zet a">3. 14</ doubl e>
</nlist>
</nlist>

Thepom xml fileinthe skeleton provides agood example on how to run the plug-
in. You can also obtain more detailed help viathe maven help system:

$ nmvn hel p: descri be -Dpl ugi n=panc - Ddetai |l =true

The following tables show the available parameters for the PanBuild and
PanCheckSyntax mojos.

Table B.1. PanBuild Mojo Parameters

sourceDirectory Location of pan language| No. Default value:
SOurces. '${ basedir} /src/main/pan'

Running the Compiler | 66

profiles

Name of the profiles
subdirectory inside of the
sourceDirectory. Used to
find the object profiles to
build.

No. Default value:

‘profiles

verbose

Whether to include
a summay of the
compilation, including
number of profiles
compiled and overal
memory utilization.

No. Default value: false

warnings

Sets whether warnings are
printed and whether they
are treated as fatal errors.
Allowed values are 'on',
'off', and 'fatal'.

No. Default value: 'on'

debugNslnclude

Pattern to apply to
template namespace to
determine whether to
activate debugging outpui.

No. Default value: '*$

debugNsExclude

Pattern to apply to
template namespace to
determine whether to
exclude debugging outpui.

No. Default value: '.+'

initial Data

A compile-time
expression that evaluates
to an nlist. This nlist is
used as the root nlist
for al compiled object
templates. A convenient
mechanism for injecting
build numbers and other
metadata into the profiles.

No. Default value: null
(empty nlist)

outputDir

The directory that will
contain the output of the
compilation.

Yes.

formats

A comma-separated list of
output formats to use. The
accepted valuesare: "pan”,
"pan.gz", "xml", "xml.gz",
"json", "json.gz", "txt",
"dep" and "dot".

No. Default vaue;

'pal’I,dep'

Running the Compiler | 67

max|teration

Set the maximum number
of iterations. This is a
fallsafe to avoid infinite
loops.

No. Default value: 10000

maxRecursion

Maximum number of

recursive calls.

No. Default value: 50

logging

Enable different types
of logging. The possible
values are: "dl", "none",
"include", "cal", "task",
and "memory"”. Multiple
values may be included
as a comma-separated list.
The vaue "none" will

override any other setting.

No.

logFile

The name of thefileto use
for logging information.
Thisvalue must be defined
in order to enable logging.

Yes, if logging attribute is
used.

Table B.2. PanCheckSyntax Mojo Parameters

sourceDirectory Location of pan language|No. Default value:

sources. '${ basedir} /src/main/pan’
verbose Whether to include|No. Default value: false

a summay of the

compilation, including

number of profiles

compiled and overal

memory utilization.
warnings Sets whether warnings are/No. Default value: ‘on'

printed and whether they
are treated as fatal errors.
Allowed values are 'on',

'off', and 'fatal’.

Ant

Using an ant task to invoke the compiler allows the compiler to be easily integrated
with other machine management tasks. To use the pan compiler within an ant build
file, the pan compiler tasks must be defined. This can be done with atask definition

element like:

<t arget name="defi ne. panc.task">

Running the Compiler | 68

<t askdef resource="org/quattor/ant/panc-ant.xm ">
<cl asspat h>
<pat hel ement pat h="${panc.jar}" />
</ cl asspat h>
</t askdef >

</target>

where the property ${ panc.jar} points to the jar file panc. j ar distributed with
the pan compiler release.

There are two tasks defined: panc and panc-check-syntax. Thefirst providesall of
the functionality available through the compiler with alarge number of options. The
second focuses on testing the pan language syntax and takes avery limited number
of options. Running the compiler can be done with tasks like the following:

<target name="conpile.cluster.profil es">

<I-- Define the |load path. By default this is just the cluster area. -->
<pat h i d="pan. | oadpat h" >

<dirset dir="${basedir}" includes="**/*" [>
</ pat h>

<panc-check-syntax ...options... >
<fileset dir="${basedir}/profiles" casesensitive="yes" includes="*.pan" />
</ panc- check- synt ax>

<panc ...options... >

<pat h refid="pan.|oadpath" />

<fileset dir="${basedir}/profiles" casesensitive="yes" includes="*.pan" />
</ panc>

</target>

where. .. options. .. isreplaced with valid options for the pan compiler ant
tasks.

The ant task supportsthe attributesin the following table. Only thewar ni ngs and
ver bose attributes are permitted for the panc-check-syntax task.

Table B.3. Ant Task Attributes

debugNslnclude Pattern to apply to|No. Default value: '"*$
template namespace to
determine whether to
activate debugging outpui.

debugNsExclude Pattern to apply to|No. Default value: '.+'
template namespace to
determine whether to
exclude debugging output.

initialData A compile-time|No. Default value: null
expression that evaluates|(empty nlist)

to an nlist. This nlist is
used as the root nlist

Running the Compiler | 69

for al compiled object
templates. A convenient
mechanism for injecting
build numbers and other
metadata into the profiles.

includeRoot

Directory to use astheroot
of the compilation.

Yes.

includes

Set of directories below
the include root to use in

the compilation. This is a

"glob".

Yes.

outputDir

The directory that will
contain the output of the
compilation.

Yes.

formats

A comma-separated list of
output formats to use. The
accepted valuesare: "pan”,
"pan.gz”, "xml", "xml.gz",
"json”, "json.gz", "txt",
"dep" and "dot".

No. Default vaue;
'pan,dep’

max|teration

Set the maximum number

of iterations. This is a

fallsafe to avoid infinite
loops.

No. Default value; 10000

maxRecursion

Maximum number of
recursive cals.

No. Default value: 50

logging

Enable different types
of logging. The possible
values are: "al", "none",
"include", "call", "task",
and "memory". Multiple
vaues may be included
as a comma-separated list.
The vaue "none" will
override any other setting.

No.

logFile

The name of thefileto use
for logging information.
Thisvalue must be defined
in order to enable logging.

Yes, if logging attribute is
used.

warnings

Sets whether warnings are
printed and whether they
are treated as fatal errors.

No. Default value: 'on'

Running the Compiler | 70

Allowed values are 'on',

'off', and 'fatal'.

verbose Whether to include/No. Default value: false
a summay of the
compilation, including

number of profiles
compiled and overal
memory utilization.

checkDependencies Whether or not to check|No. Default value: true
dependencies and only
build profiles that have not
changed.

debugTask Emit debugging messages|No. Default value: 0
for the ant task itself. If
the valueis 1, then normal
debugging is turned on; if
the value is greater than
1 then verbose debugging
Is turned on. A value of
zero turns off the task
debugging.

ignoreDependencyPattern |A pattern which will|No. Default value: null
select dependencies to
ignore during the task's
dependency calculation.
The pattern will be
matched against the
namespaced template
name.

batchSize If set to a positive integer,|No. Default value: 0
the outdated templateswill
be processed in batches of
batchSize.

Nested Elements

Some of the configuration options are specified via nested elements. The panc
task supportsal of these; the panc-check-syntax task only supportsthef i | eset
nested element.

Running the Compiler | 71

Fileset

Nested f i | eset elements specify the list of files to process with the compiler.
These are standard ant element and take all of the usual attributes.

Path

A nested pat h element specifies the list of include directories to use during the
compilation. Thisis a standard ant element and takes all of the usual attributes.

Setting JVM Parameters

If the compiler is invoked via the pan compiler ant task, then the memory option
can be added with the ANT_OPTS environmental variable.

export ANT_OPTS="- Xmx1024M

or

setenv ANT_OPTS "- Xmx1024M'

depending on whether you use a c-shell or a bourne shell. Other options can be
similarly added to the environmental variable. (The valueis a space-separated list.)

Invocation Inside Eclipse

If you use the default VM to run the pan compiler ant task, then you will need to
increase the memory when starting eclipse. From the command line you can add
the VM arguments like:

eclipse -vmargs - Xnk<nenory size>

Y ou may also need to increase the memory in the "permanent” generation for a Sun
VM with

eclipse -vmargs - XX: MaxPer nSi ze=<nenory si ze>

Thiswill increase the memory available to eclipse and to all tasks using the default
virtual machine. For Max OS X, you will haveto edit the application "ini" file. See
the eclipse instructions for how to do this.

If you invoke a new Java virtual machine for each build, then you can change the
ant argumentsviathe run parameters. From within the "ant" view, right-click on the
appropriate ant build file, and then select "Run As -> Ant Build...". In the pop-up
window, select the JRE tab. In the "VM arguments' panel, add the - Xmx option.
The next build will use these options. Other VM options can be changed in the same

way.

Running the Compiler | 72

The options can also be set using the "Window -> Preferences -> Java -> Installed
JRES" pandl. Select the JRE you want use, click edit and add the additional
parameters in the "DefaultVM arguments® field.

Running the Compiler | 73

APPENDIX C

Command Reference

The pan distributions provide a set of commands that allow the compiler to be
invoked and that demonstrate how to analyze available logging information. These
commands are provided for ease of use for one-off tasks. The compiler can be more
efficiently invoked via Apache Ant or Maven for automated use of the compiler in
production.

Command Reference | 74

Name

panc — compile pan language templates

Synopsis

panc [--no-debug | --debug] [--debug-ns-include r egex] [--debug-ns-exclude
r egex] [--initid-datanl i st - dm] [--include-path pat h] [--output-dir di r] [--
formats f or mat s] [--java-opts | ava- opti ons] [--max-iteration | i m t] [--
max-recursion | i m t] [--logging st ri ng] [--log-filefi | e] [--warningsf | ag]
[-V | --no-verbose | --verbose] [-h | --no-help | --help] [t enpl at e...]

Description

The panc command will compile a collection of pan language templates into a set
of machine configuration files. This command, with its reorganized and simplified
options, replaces the older panc command.

--no-debug, --debug

- -debug- ns-i ncl ude=r egex

- - debug- ns- excl ude=r egex

--initial-data=nlist-dni

--incl ude- pat h=pat h

Enable or disable all debugging. By default,
debugging is turned off.

Define apattern to selectively enable the pan
debug and t raceback functions. Those
functions will be enabled for templates
where the template name matches one of
the include regular expressions and does not
match an exclude regular expression. This
option may appear multiple times.

Define a pattern to selectively disable the
pan debug and traceback functions.
Those functions will be disabled for
templates where the template name matches
one of the exclude regular expressions. This
option may appear multipletimes. Exclusion
takes precedence over inclusion.

A DML expression that evaluatesto an nlist.
This value will be used as the starting nlist
for all object templates. Thisisaconvenient
mechanism for injecting build numbers and
other metadata in the profiles.

Defines the source directories to search
when looking for templates. The value must
be alist of absolute directories delimited by

Command Reference | 75

--output-dir=dir

--format s=format s

--java-opts=string

--max-iteration=limt

--max-recursion=limt

--1oggi ng=string

--log-file=file

--war ni ngs=fl ag

-V, --no-verbose,
ver bose

the platform's path separator. If this is not
specified, the current working directory is
used.

Set where the machine configuration files
will bewritten. If thisoption isnot specified,
then the current working directory isused by
default.

A comma separated list of desired output
formats. Allowed valuesare"pan", "pan.gz",
“xml", "xml.gz", "json", "json.gz", "txt",
"dep" and "dot". The default is value is
"pan,dep".

List of options to use when starting the
java virtual machine. These are passed
directly to the java command and must be
valid. Multiple options can be specified by
separating them with a space. When using
multiple options, the full value must be
enclosed in quotes.

Set the limit on the maximum number of
permitted loop iterations. This is used to
avoid infinite loops. The default value is
5000.

Set the limit on the maximum number of
permitted recursions. The default value is
10.

Enable compiler logging; possible values
are "dl", "none", "include", "cal", "task",
and "memory". A log file must be specified
withthe- -1 og-f i | e optionto capturethe
logging information.

Set the name of the file to use to store
logging information.

Possible values are "on", "off", and "fatal".
The last value will turn al warnings into
fatal errors.

At the end of a compilation, print run
statistics including the numbers of files

Command Reference | 76

processed, total time, and memory used. The
default is not to print these values.

-h, --no-help, --help Print a short summary of command usage if
requested. No other processing isdoneif this
optionis given.

The panc command is just a wrapper script around the java command to simplify
setting various options. The typical case is that the command is invoked without
optionsand just alist of object templates as the arguments. Larger sets of templates
will need to set the memory option for the Java Virtual Machine; this should be
donethrough the- - j ava- opt s option.

Command Reference | 77

Name
panc-annotations — process annotations in pan configuration files

Synopsis

panc- annot at i ons [--base-dir base- di rect ory] [--output-dir di r] [--
java-opts j vim opt i ons] [-v | --no-verbose | --verbose] [-h | --no-help | --help]
[tenpl ate..]]

Description

The panc-annotations command will process the annotations contains within pan
configuration files within the given base directory.

- - base-di r =base- Defines a base directory containing all pan
directory configuration files to process. The default is
value is the current working directory.

--output-dir=dir Set where the annotation files will be
written. If this option is not specified, then
the current working directory is used by
default.

--java-opts=string List of options to use when starting the
java virtual machine. These are passed
directly to the java command and must be
valid. Multiple options can be specified by
separating them with a space. When using
multiple options, the full value must be
enclosed in quotes.

-V, --no-verbose, -- At the end of a compilation, print run

ver bose statistics including the numbers of files
processed, total time, and memory used. The
default is not to print these values.

-h, --no-help, --help Print a short summary of command usage if
requested. No other processingisdoneif this
option is given.

The panc-annotations command isjust awrapper script around thejava command
to simplify setting various options.

Command Reference | 78

Name
panc-build-stats.pl — create areport of panc build statistics

Synopsis
panc- bui | d-stats. pl [-- hel p]{logfile}
Description

Thepanc-build-stats.pl script will analyzeapanc log file and report build statistics.
The script takes the name of the log file as its only argument. If no argument is
given or the - - hel p option is used, a short usage message is printed. The log file
must have been created with "task" logging enabled.

The script will extract the time required to execute, to set default values, to validate
the configuration, to write the XML file, and to write a dependency file. 1t will
also report the "build" time which is the time for executing, setting defaults, and
validating an object file.

The analysis is written to the standard output, but may be saved in a file using
standard 10 stream redirection. The format of the file is appropriate for the R
statistical analysis package, but should be trivial to import into excel or any other
analysis package.

Example

If the output from the command is written to the file bui | d. t xt, then the
following R script will do a smple analysis of the results. This will provide
statistical results on the various build phases and show histograms of the
distributions.

R-script for sinple analysis of build report
bstats <- read.table("build.txt")
attach(bstats)

sumar y(bst at s)

hi st (buil d, ncl ass=20)

hi st (execut e, ncl ass=20)

hi st (execut e, ncl ass=20)

hi st (def aul ts, ncl ass=20)

hi st (val i dati on, ncl ass=20)

hi st (xm, ncl ass=20)

hi st (dep, ncl ass=20)

det ach(bst at s)

Command Reference | 79

Name
panc-call-tree.pl — create a graph of pan call tree

Synopsis
panc-cal | -tree. pl [--hel p][--format=dot | hg] {logfile}

Description

The panc-call-tree.pl script will analyze a panc log file and create a graph of the
pan call tree. One output file will be created for each object template. The script
takes the name of the log file as its only argument. If no argument is given or the
- - hel p option is used, a short usage message is printed. The log file must have
been created with "call" logging enabled.

The graphs are written in either "dot" or "hypergraph" format. Graphviz [http://
www.graphviz.org/] can be used to visualize graphs written in dot format.
Hypergraph [http://hypergraph.sourceforge.net/] can be used to visualize graphs
written in hypergraph format. Note that all "includes’ are shown in the graph; in
particular unique and declaration templates will appear in the graph wherever they
are referenced.

Command Reference | 80

http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/
http://hypergraph.sourceforge.net/
http://hypergraph.sourceforge.net/

Name
panc-compile-stats.pl — create areport of panc compilation statistics

Synopsis
panc- conpi |l e-stats. pl [--hel p]{logfile}
Description

The panc-compile-stats.pl script will analyze apanclog file and report compilation
statistics. The script takes the name of the log file as its only argument. If no
argument isgiven or the - - hel p option is used, a short usage message is printed.
The log file must have been created with "task" logging enabled.

The script will extract the start time of each compilation and its duration. This
compilationisthetimeto parse atemplatefile and create theinternal representation
of the template. The analysisis written to the standard output, but may be saved in
afile using standard 10 stream redirection. The format of the file is appropriate for
the R statistical analysis package, but should be trivial to import into excel or any
other analysis package.

Example

If the output from the command is written to the file conpi | e. t xt, then the
following R script will create a "high-density" plot of the information. This graph
shows avertical line for each compilation, where the horizontal location is related
to the start time and the height of the line the duration.

R-script for sinple analysis of conpile report

cstats <- read.table("conpile.txt")

attach(cstats)

plot(start/ 1000, duration, type="h", xlab="time (s)", ylab="duration (nms)")
detach(cstats)

Command Reference | 81

Name
panc-memory.pl — create areport of panc memory utilization

Synopsis
panc- nmenory. pl [-- hel p] {logfile}
Description

The panc-memory.pl script will analyze a panc log file and report on the memory
usage. The script takes the name of the log file asits only argument. If no argument
is given or the - - hel p option is used, a short usage message is printed. The log
file must have been created with "memory" logging enabled.

The script will extract the heap memory usage of the compiler asafunction of time.
The memory useisreported in megabytes and thetimesarein milliseconds. Usually
one will want to use this information in conjunction with the thread information
to understand the memory use as it relates to general compiler activity. Note that
java uses sophisticated memory management and garbage collection techniques,
fluctuations in memory usage may not be directly related to the compiler activity
at any instant in time.

Example

If the output from the command is written to the file nenory. t xt, then the
following R script will create a plot of the memory utilization as afunction of time.

R-script for sinple analysis of nenory report

mstats <- read.table("nmenory.txt")

attach(nstats)

pl ot (tine/ 1000, nenory, xlab="time (s)", ylab="menory (MB)", type="I")
det ach(st at s)

Command Reference | 82

Name
panc-profiling.pl — generate profiling information from panc log file

Synopsis
panc- profiling.pl [--hel p][--usefunctions] {logfile}

Description

The panc-profiling.pl script will analyze a panc log file and report profiling
information. The script takes the name of the log file as its first argument. The
second argument determinesif function call information will beincluded (flag=1) or
not (flag=0). By default, thefunction call informationisnot included. If no argument
is given or the - - hel p option is used, a short usage message is printed. The log
file must have been created with "call" logging enabled.

Two files are created for each object template: one with ‘top-down' profile
information and the other with 'bottom-up' information.

The top-down file contains a text representation of the call tree with each entry
giving the total time spent in that template and any templates called from that
template. At each level, one can use this to understand the relative time spent in a
node and each direct descendant.

The bottom-up file provides how much time is spent directly in each template (or
function), ignoring any time spent in templates called from it. This allows one to
see how much time is spent in each template regardiess of how the template (or
function) was called.

All of the timing information is the "wall-clock" time, so other activity on the
machine and the logging itself can influence the output. Nonetheless, the profiling
information should be adequate to understand inefficient parts of a particular build.

Command Reference | 83

Name
panc-threads.pl — create areport of thread activity

Synopsis
panc-t hr eads. pl [- - hel p]{logfile}

Description

The panc-threads.pl script will analyze a panc log file and report on build activity
per thread. The script takes the name of the log file as its only argument. If no
argument isgiven or the - - hel p option is used, a short usage message is printed.
The log file must have been created with "task" logging enabled.

The script will give the start time of build activity on any particular thread and
the ending time. This can be used to understand the build and thread activity in a
particular compilation. Thetimesare givenin millisecondsrelativeto thefirst entry
inthelogfile.

Example

If the output from the command is written to the file t hr ead. t xt, then the
following R script will create a plot showing the duration of the activity on each
thread.

R-script for sinple analysis of thread report

tstats <- read.tabl e("threads.txt")

attach(tstats)

pl ot (st op/ 1000, t hread, type="n", xlab="tine (s)", ylab="thread ID")
segnment s(start/ 1000, thread, stop/1000, thread)

detach(tstats)

Command Reference | 84

APPENDIX D

Built-In Function Reference

Pan provides a large (and growing) number of built-in functions. These are treated
as operators by the pan compiler implementation and are thus highly optimized.
Consequently, they should be preferred to writing your own user-defined functions
when possible. Because they are built into the compiler, the argument processing
isdifferent than that for user-defined functions. In particular, some arguments may
be evaluated only when necessary and nul | can be avalid function argument.

Built-In Function Reference | 85

Name
panc:append — adds a value to the end of alist

Synopsis

i st append(val ue);

el ement val ue,

list append(target, value);

list target;
el enent val ue;

list append(target, value);

vari abl e_reference target;
el enment val ue;

Description

The append function will add the given value to the end of the target list. There
are three variants of thisfunction. For all of the variants, an explicit nul | valueis
illegal and will terminate the compilation with an error.

The first variant takes a single argument and always operates on SELF. It will
directly modify the value of SELF and give the modified list (SELF) as the return
value. If SELF does not exist, isundef, or isnul | , then an empty list will be
created and the given value appended to that list. If SELF existsbut isnot alist, an
error will terminate the compilation. Thisvariant cannot be used to create acompile-
time constant.

/result will have the values 1 and 2 in that order

"Iresult' = list(1);
‘/result’ = append(2);

The second variant takes two arguments. The first argument isalist value, either a
literal list value or alist calculated from a DML block. This version will create a
copy of the given list and append the given value to the copy. The modified copy is
returned. If thetarget isnot alist, then an error will terminate the compilation. This
variant can be used to create acompile-time constant aslong asthetarget expression
does not reference information outside of the DML block by using, for example,
theval ue function.

/result will have the values 1 and 2 in that order

/x will only have the value 1

"Ix' = list(1);
"/result' = append(value('/x"), 2);

Built-In Function Reference | 86

The third variant also takes two arguments, where the first value is a variable
reference. This variant will take precedence over the second variant. This variant
will directly modify the referenced variable and return the modified list. If the
referenced variable does not exist, it will be created. As for the other forms, if the
referenced target existsand isnot alist, then an error will terminate the compilation.
SELF or descendants of SELF can be used asthetarget. This variant can be used to
createacompile-time constant if thereferenced variableisan existinglocal variable.
Referencing a global variable (except via SELF) is not permitted as modifying
global variables from within aDML block is forbidden.
/result will have the values 1 and 2 in that order
"Iresult' = {

append(x, 1); # will create |ocal variable x

append(x, 2);
IE

Built-In Function Reference | 87

Name
panc:base64 decode — decodes a string that has been encoded in base64 format

Synopsis
string base64_decode(encoded);

string encoded;

Description

The base64_decode function will return the unencoded value of the base64
(RFC 2045) encoded argument. If the argument is not avalid base64 encoded value
afatal error will occur.

Iresult have the string value 'hello world'
"/result' = base64_decode(' aG/sh@Ggd29ybGQ=");

Built-In Function Reference | 88

Name
panc:base64 encode — encodes a string in base64 format

Synopsis
string base64_encode(unencoded);

string unencoded;

Description

Thebase64_encode functionwill return the base64 (RFC 2045) encoded format
of the argument.

Iresult have the string val ue 'aG/sbhGgd29ybGQ'
"/result' = base64_encode(' hello world');

Built-In Function Reference | 89

Name
panc:clone — returns a clone (copy) of the argument

Synopsis
el ement clone(arg);

el enent arg;

Description

Thecl one function may return aclone (copy) of theargument. If theargumentisa
resource, theresult will bea"deep" copy of the argument; subsequent changesto the
argument will not affect the clone and vice versa. Because properties areimmutable
internally, this function will not actually copy a property instead returning the
argument itself.

Built-In Function Reference | 90

Name
panc:create — create an nlist from a structure template

Synopsis
nlist create(tpl _nane,);

string tpl_name;

Description

The cr eat e function will return an nlist from the named structure template. The
optional additional arguments are key, value pairsthat will be added to the returned
nlist, perhaps overwriting values from the structure template. The keys must be
strings that contain valid nlist keys (see Path Literals Section). The values can be
any element. Null values will delete the given key from the resulting nlist.

description of CD nount entry with the device undefined

(in file 'nount_cdrom pan')
structure tenpl ate nmount _cdrom

‘devi ce' = undef;

"path' = '/mt/cdron;

"type' = 'is09660';

‘options' = list('noauto’', 'owner', 'ro');

use fromwi thin another tenplate
'/ system nounts/0' = create(' nount_cdronmi, 'device', 'hdc');

the above is equivalent to the follow ng two |ines
'/ system nounts/ 0" = create(' nount_cdron);
'/ systenml nount s/ 0/ devi ce' = 'hdc';

Built-In Function Reference | 91

Name
panc:debug — print debugging information to the console

Synopsis

string debug(nsg);

string neg;

Description

This function will print the given string to the console (on stdout) and return the
message astheresult. Thisfunctionality must be activated either from the command

lineor viaacompiler option (see compiler manual for details). If thisisnot activated,
the function will not evaluate the argument and will return undef.

Built-In Function Reference | 92

Name
panc:delete — delete the element identified by the variable expression

Synopsis
undef del ete(arg);

vari abl e_expressi on arg;

Description

This function will delete the element identified by the variable expression given
in the argument and return undef. The variable expression can be a simple or
subscripted variable reference (e.g. X, x[0], x['abc][1], etc.). Only variables local
to a DML block can be modified with this function. Attempts to modify a global
variable will cause afatal error. For subscripted variable references, this function
has the same effect as assigning the variable reference to null.

/result will contain the list (‘a', 'c')
"Iresult' = {

x =list('a', 'b'", 'c');

del ete(x[1]);

X,

}s

Built-In Function Reference | 93

Name
panc:deprecated — print deprecation warning to console

Synopsis
string deprecated(|evel, nsg);

I ong | evel;
string neg;

Description

This function will print the given string to the console (on stderr) and return the
message as theresult, if | evel islessthan or equal to the deprecation level given
as acompiler option. If the message is not printed, the function returns undef. The
value of | evel must be non-negative.

Built-In Function Reference | 94

Name
panc:digest — creates a digest of a message using the specified algorithm

Synopsis
string digest(algorithm nessage);

string algorithm
string message;

Description

This function returns a digest of the message using the specified algorithm.
The valid agorithms are: MD2, VD5, SHA, SHA- 1, SHA- 256, SHA- 384, and
SHA- 512. The algorithm name is not case sensitive.

Built-In Function Reference | 95

Name
panc:error — print message to console and abort compilation

Synopsis
void error(msg);

string neg;

Description

This function prints the given message to the console (stderr) and aborts the
compilation. This function cannot appear neither in variable subscripts nor in
function arguments; afatal error will occur if found in either place.

a user-defined function requiring one argunent
function foo = {

if (ARCC = 1) {
error("foo(): wong nunber of arguments: " + to_string(ARCO));

)i

normal processing...

b

Built-In Function Reference | 96

Name
panc:escape — escape hon-alphanumeric charactersto allow use as nlist key

Synopsis
string escape(str);

string str;

Description

This function escapes non-alphanumeric characters in the argument so that it can
be used inside paths, for instance as an nlist key. Non-alphanumeric characters are
replaced by an underscore followed by the hex value of the character. If the string
begins with a digit, the initial digit is also escaped. If the argument is the empty
string, the returned value is a single underscore ' '

/result will have the value '1 2bl’
"Iresult' = escape('1+1');

Built-In Function Reference | 97

Name

panc:exists — determines if a variable expression, path, or template exists
Synopsis

bool ean exi sts(var);

vari abl e_expressi on var;

bool ean exi sts(path);

string path;

bool ean exi sts(tpl);

string tpl;
Description

Thisfunctionwill return aboolean indicating whether avariable expression, path, or
template exists. If the argument isavariable expression (with or without subscripts)
then thisfunction will return trueif the given variable exists; the value of referenced
variable is not used. If the argument is not a variable reference, the argument is
evaluated; the value must be a string. If the resulting string is a valid external or
absolute path, the path is checked. Otherwise, the string isinterpreted as atemplate
name and the existence of thistemplate is checked.

Notethat if the argument is avariable expression, only the existence of the variable
is checked. For example, the following code will always leave r with a value of
true.

\%
r

'/ some/ absol ut e/ pat h';
exi sts(v);

If you want to test the path, remove the ambiguity by using a construct like the
following:

\
r

'/ sonme/ absol ut e/ pat h';
exists(v+'');

The value of r inthiscase will bet rue if / some/ absol ut e/ pat h exists or
f al se otherwise.

Built-In Function Reference | 98

Name
panc:file_contents — provide contents of file asastring

Synopsis
string file_contents(filenane);

string fil enane;

Description

Thisfunction will return a string containing the contents of the named file. Thefile
islocated using the standard source file lookup algorithm. Because the load path is
used to find thefile, thisfunction may not be used to create acompile-time constant.
If the file cannot be found, an error will be raised.

Built-In Function Reference | 99

Name
panc:first — initialize an iterator over aresource and return first entry

Synopsis
bool ean first(r, key, value);

resource r;
vari abl e_expressi on key;
vari abl e_expressi on val ue;

Description

This function resets the iterator associated with r so that it points to the beginning
of theresource. It will returnf al se if the resourceis empty; t r ue, otherwise. If
the resource is not empty, then it will also set the variable identified by key to the
child'sindex and the variable identified by val ue to the child's value. Either key
or val ue may beundef , inwhich case no assignment is made. For alist resource
key isthe child's numeric index; for an nlist resource, the string value of the key
itself. Anexample of using f i r st with alist:

conmpute the sum of the elenents inside nunii st

numist = list(1, 2, 4, 8);
sum = 0;

ok = first(numist, k, v);
while (ok) {

sum = sum + v;
ok = next (numist, k, v);
}.

value of sumw |l be 15

Anexampleof usingf i r st with annlist:

put the list of all the keys of table inside keys
table = nlist("a", 1, "b", 2, "c", 3);

keys = list();
ok = first(table, k, v);
while (ok) {

keys[| engt h(keys)] = k;
ok = next(table, k, v);

$H

keys will be ("a", "b", "c")

Built-In Function Reference | 100

Name
panc:format — format a string by replacing references to parameters

Synopsis
string format(fm, param);

string fm;
property param

Description

The f or mat function will replace all references within the f nt string with the
values of the referenced properties. This provides functionality similar to the c-
language's pri nt f function. The syntax of the f nt string follows that provided
in the javalanguage; seethe For mat t er entry for full details.

Built-In Function Reference | 101

Name
panc:if_exists — check if atemplate exists, returning template name if it does

Synopsis
string|undef if_exists(tpl);

string tpl;
Description

Thei f _exi st s function checksif the named template exists on the current load
path. If it does, the function returns the name of the template. If it does not, undef
isreturned. This can be used to conditionally include a template:

include {if_exists('ny/conditional/tenplate')};

This function should be used with caution as this brings in dependencies based on
the state of the file system and may cause dependency checking to be inaccurate.

Built-In Function Reference | 102

Name

panc:index — finds substring within a string or element within aresource

Synopsis

| ong i ndex(sub, arg, start);

string sub;
string arg;
| ong start;
list,

| ong i ndex(sub, start);

property sub;

string list;

| ong start;

string index(sub, arg, start);
property sub;

nlist arg;

| ong start;

| ong i ndex(sub, arg, start);

nlist sub;
list arg;
| ong start;

string index(sub, arg, start);

nlist sub;
nlist arg;
| ong start;

Description

Thei ndex function returnsthelocation of asubstring within astring or an element
within aresource. In detail the five different forms perform the following actions.

Thefirst form searchesfor the given substring inside the given string and returnsiits

position from the beginning of the string or
isgiven, startsinitially from that position.

"/s1' = index('foo', 'abcfoodefoobar'); # 3
'/s2' = index('f00', 'abcfoodefoobar'); # -1
'/s3" = index('foo', 'abcfoodefoobar', 4); #

- 1 if not found; if the third argument

8

Built-In Function Reference | 103

The second form searches for the given property inside the given list of properties
and returns its position or - 1 if not found; if the third argument is given, starts
initially from that position; it is an error if sub and ar g’s children are not of the
same type.

search in a list of strings (result = 2)
“/11" = index("foo", list("Foo", "FOO', "foo", "bar"));

search in a list of longs (result = 3)
"/12" = index(1, list(3, 1, 4, 1, 6), 2);

The third form searches for the given property inside the given named list of
properties and returnsits name or the empty string if not found; if the third argument
isgiven, skipsthat many matching children; itisanerror if sub andar g’schildren
are not of the same type.

sinple color table
"/table' = nlist('red , O0xf00, 'green', Ox0f0, 'blue', 0x00f);

result will be the string 'green'
"/ namel' = index(0x0f0, value('/table'));

result will be the enpty string
'/ nane2' = index(0x0f0, value('/table'), 1);

Thefourth form searchesfor the given nlist inside the given list of nlistsand returns
itsposition or - 1 if not found. The comparison isdone by comparing all the children
of sub, these children must all be properties. If the third argument is given, starts
initially from that position. It is an error if sub and ar g’s children are not of the
same type or if their common children don’t have the same type.

search a record in a list of records (result = 1, the second nlist)
"[111 = index(
nlist('key', 'foo'),
list(
nlist('key', 'bar', 'val', 101),
nlist('key', 'foo')
)
)

search a record in a list of records starting at index (result = 1, the second nlist)

"/112" = index(

nlist('key', 'foo'),

list(
nlist('key', 'bar', 'val', 101),
nlist('key', 'foo'),
nlist('key', '"bar', 'val', 101),
nlist('key', 'foo'),
nlist('key', '"bar', 'val', 101),
nlist('key', 'foo')
)

1

)

The last form searches for the given nlist inside the given nlist of nlists and returns
itsname or the empty string if not found. If the third argument is given, the function
skips that many matching children. It isan error if sub and ar g’s children are not
of the same type or if their common children don’'t have the same type.

search for matching nlist (result ="'b")

Built-In Function Reference | 104

"/ nnl'

nlist('key', 'foo'),

i ndex(
nlist(
)
Dk

‘a,
‘b,

nlist('key
nlist('key

' bar',
'foo')

‘val ', 101)

skip first match and return i ndex of second match (result="d")

"/ nn2'

nlist('key', 'foo'),

i ndex(
nlist(
)

1

DE

St ol QlT Q)

nlist('key
nlist('key
nlist('key
nlist('key

nlist('key'

nlist('key

" bar',
'foo'),
" bar',
'foo'),
"bar',
'foo')

‘val ', 101)
‘val ', 101)

‘val', 101),

Built-In Function Reference | 105

Name
panc:is_boolean — checksto see if the argument is a double

Synopsis
bool ean i s_bool ean(arg);

el enent arg;

Description

Thei s_bool ean function will returnt r ue if the argument is a boolean value;
itwill return f al se otherwise.

Built-In Function Reference | 106

Name
panc:is_defined — checksto seeif the argument is anything but undef or nul |

Synopsis
bool ean is_defined(arg);

el enent arg;

Description

Thei s_defi ned function will return at r ue value if the argument is anything
but undef or nul I ;itwill returnf al se otherwise.

Built-In Function Reference | 107

Name
panc:is_double — checksto seeif the argument is a double

Synopsis
bool ean i s_doubl e(arg);

el enent arg;

Description

Thei s_doubl e function will return t r ue if the argument is a double value; it
will return f al se otherwise.

Built-In Function Reference | 108

Name
panc:is _list — checksto seeif the argument is adouble

Synopsis
bool ean is list(arg);

el enent arg;

Description

Theis_|ist function will return t r ue if the argument is a list; it will return
f al se otherwise.

Built-In Function Reference | 109

Name
panc:is_long — checksto seeif the argument isalong

Synopsis
bool ean is_long(arg);

el enent arg;

Description

Thei s_| ong function will return t r ue if the argument is a long value; it will
returnf al se otherwise.

Built-In Function Reference | 110

Name
panc:is_nlist — checksto seeif the argument is an nlist

Synopsis
bool ean is nlist(arg);

el enent arg;

Description

Thei s_nli st functionwill returnt r ue if theargument isan nlist; it will return
f al se otherwise.

Built-In Function Reference | 111

Name
panc:is_null — checksto seeif the argument isnul |

Synopsis
bool ean is _null (arg);

el enent arg;

Description

Thei s_nul | function will return at r ue valueif the argument isnul | ; it will
returnf al se otherwise.

Built-In Function Reference | 112

Name
panc:is_number — checks to seeif the argument is a number

Synopsis
bool ean i s_nunber (arg);

el enent arg;

Description

Thei s_nunber function will return at r ue value if the argument is a number
(long or double); it will return f al se otherwise.

Built-In Function Reference | 113

Name
panc:is_property — checksto seeif the argument is a property

Synopsis
bool ean is_property(arg);

el enent arg;

Description

Thei s_property functionwill returnat r ue valueif theargument isaproperty
(atomic value); it will return f al se otherwise.

Built-In Function Reference | 114

Name
panc:is_resource — checksto seeif the argument is aresource

Synopsis
bool ean is_resource(arg);

el enent arg;

Description

Thei s_resour ce functionwill returnat r ue valueif theargument isaresource
(collection); it will return f al se otherwise.

Built-In Function Reference | 115

Name
panc:is_string — checksto seeif the argument isa string

Synopsis
bool ean is_string(arg);

el enent arg;

Description

Thei s_stri ng functionwill returnt r ue if theargumentisastring value; it will
returnf al se otherwise.

Built-In Function Reference | 116

Name
panc:key — returns name of child based on the index

Synopsis
string key(resource, index);

nlist resource;
| ong i ndex;

Description

This function returns the name of the child identified by itsindex, this can be used
to iterate through al the children of an nlist. The index corresponds to the key's
position inthelist of al keys, sorted in lexical order. Thefirst index is 0.

‘/table' = nlist('red , O0xf00, 'green', Ox0f0, 'blue', 0x00f)

"I keys' ={
tbl = value('/table');
res ='";
len = length(thbl);
idx = 0;

while (idx < len) {

res res + key(tbl, idx) + '

i dx idx + 1

Ik

if (length(res) > 0) splice(res, -1, 1)
return(res);

} B

/keys will be the string 'blue green red

Built-In Function Reference | 117

Name
panc:length — returns size of a string or resource

Synopsis

long | ength(str);
string str;

l ong | ength(res);
resource res;
Description

Returnsthe size of the given string or the number of children of the given resource.

Built-In Function Reference | 118

Name
panc:list — create anew list consisting of the function arguments

Synopsis
list list(elem);

el enent el em

Description

Returns a newly created list containing the function arguments.

creates an enpty |ist
"lempty' = list();

define list of two DNS servers
"/dns' = list('137.138.16.5', '137.138.17.6');

Built-In Function Reference | 119

Name
panc:match — checksif aregular expression matches a string

Synopsis
bool ean match(target, regex);

string target;
string regex;

Description

This function checks if the given string matches the regular expression.

device_t is a string that can only be "disk", "cd" or "net"
type device t = string with match(self, '~ (disk|cd|net)$’);

Built-In Function Reference | 120

Name
panc:matches — checksif aregular expression matches a string

Synopsis
string[] matches(target, regex);

string target;
string regex;

Description

This function matches the given string against the regular expression and returns
thelist of captured substrings, thefirst one (at index 0) being the complete matched
string.

| Pv4 address in dotted number notation
type ipvd = string with {
result = matches(self, '~ (\d+)\.(\d+)\.(\d+)\.(\d+)$);
if (length(result) == 0)
return("bad string");
i =1;
while (i <= 4) {
X = to_long(result[i]);
if (x > 255) return("chunk " + to_string(i) + " too big: " + result[i]);
i =i + 1;
i

return(true);

Built-In Function Reference | 121

Name
panc:merge — combine two resources into asingle one

Synopsis
resource nerge(resl, res2,);

resource resi;
resource res?2;

Description

This function returns the resource which combines the resources given as
arguments, all of which must be of the sametype: either al listsor all nlists. If more
than one nlist has a child of the same name, an error occurs.

#/z will contain the list 'a', 'b', 'c', 'd, '€
“Ixt =list('a, 'b", 'c');

ly' =list('d, 'e');

"/z' = merge (value('/x"), value('/y'));

Built-In Function Reference | 122

Name
panc:nlist — create an nlist from the arguments

Synopsis
nlist nlist(key, property,);

string key;
el enent property;

Description

The nl i st function returns a new nlist consisting of the passed arguments; the
arguments must be key value pairs. All of the keys must be strings and have values
that are legal path terms (see Path Literals Section).

resulting nlist associates name with | ong val ue
"Iresult’ = nlist(

‘one', 1,

"two', 2,

"three', 3,
iE

Built-In Function Reference | 123

Name
panc:next — increment iterator over aresource

Synopsis
bool ean next(res, key, value);
resource res;

identifier key;
identifier val ue;

Description

Thisfunctionincrementstheiterator associated withr es sothat it pointsto the next
child element. The key and value of the next child are stored in the named variables
key and val ue, either of which could be undef . The function returnst r ue if
the child exists, or f al se otherwise.

Built-In Function Reference | 124

Name
panc:path_exists — determinesif a path exists

Synopsis

bool ean pat h_exi st s(path);
string path;

Description

This function will return a boolean indicating
path must be an absolute or external path. Thisf

totheexi st s functionto avoid an ambiguity i
as a path or variable reference.

whether the given path exists. The
unction should be usedin preference
nhandling theargumenttoexi st s

Built-In Function Reference | 125

Name
panc:prepend — adds a value to the beginning of alist

Synopsis

l'ist prepend(val ue);

el ement val ue;

list prepend(target, value);

list target;
el enent val ue;

list prepend(target, value);

vari abl e_reference target;
el enment val ue;

Description

The pr epend function will add the given value to the beginning of the target list.
There are three variants of this function. For al of the variants, an explicit nul |
valueisillegal and will terminate the compilation with an error.

The first variant takes a single argument and always operates on SELF. It will
directly modify the value of SELF and give the modified list (SELF) as the return
value. If SELF does not exist, isundef, or isnul | , then an empty list will be
created and the given value prepended to that list. If SELF existsbutisnot alist, an
error will terminate the compilation. Thisvariant cannot be used to create acompile-
time constant.

/result will have the values 2 and 1 in that order

"Iresult' = list(1);
‘/result' = prepend(2);

The second variant takes two arguments. The first argument isalist value, either a
literal list value or alist calculated from a DML block. This version will create a
copy of the given list and prepend the given value to the copy. The modified copy is
returned. If thetarget isnot alist, then an error will terminate the compilation. This
variant can be used to create acompile-time constant aslong asthetarget expression
does not reference information outside of the DML block by using, for example,
theval ue function.

/result will have the values 2 and 1 in that order

/x will only have the value 1

"Ix' = list(1);
"Iresult' = prepend(value('/x"), 2);

Built-In Function Reference | 126

The third variant also takes two arguments, where the first value is a variable
reference. This variant will take precedence over the second variant. This variant
will directly modify the referenced variable and return the modified list. If the
referenced variable does not exist, it will be created. As for the other forms, if the
referenced target existsand isnot alist, then an error will terminate the compilation.
SELF or descendants of SELF can be used asthetarget. This variant can be used to
createacompile-time constant if thereferenced variableisan existinglocal variable.
Referencing a global variable (except via SELF) is not permitted as modifying
global variables from within aDML block is forbidden.
/result will have the values 2 and 1 in that order
"Iresult' = {

prepend(x, 1); # will create |ocal variable x

prepend(x, 2);
IE

Built-In Function Reference | 127

Name
panc:replace — replace all occurrences of aregular expression

Synopsis
string replace(regex, repl, target);

string regex;
string repl;
string target;

Description

Ther epl ace functionwill replace all occurrences of the given regular expression
with the replacement string. The regular expression is specified using the standard
pan regular expression syntax. The replacement string may contain references to
groups identified within the regular expression. The group references are indicated
with a dollar sign ($) followed by the group number. A literal dollar sign can be
obtained by preceding it with a backslash.

Built-In Function Reference | 128

Name
panc:return — exit DML block with given value

Synopsis
el enment return(val ue);

el enent val ue;

Description

This function interrupts the processing of the current DML block and returns from
it with the given value. Thisis often used in user-defined functions.

function facto = {

if (ARGV[O0] < 2) return(l);
return(ARGV[0] * facto(ARGV[O] - 1));
¥

Built-In Function Reference | 129

Name
panc:splice — insert string or list into another

Synopsis

string splice(str, start, length, repl);
string str;

| ong start;

| ong | engt h;

string repl;

list splice(list, start, length, repl);
[ist list;

| ong start;

| ong | engt h;
list repl;

Description

The first form of this function deletes the substring identified by start and
| engt h and, if afourth argument is given, insertsr epl .

'/s1' = splice('abcde', 2, 0, '"12"); # abl2cde
'/s2' = splice('abcde', -2, 1); # abce
'/s3'" = splice('abcde', 2, 2, 'XXX); # abXXXe

The second form of this function deletes the children of the given list identified
by st art and| engt h and, if afourth argument is given, replaces them with the
contentsof r epl .
#wll be the list 'a', 'b'", 1, 2, 'c', 'd, 'e'
/11" = splice(list('a,'b','c',"'d,"'e), 2, 0, list(1,2));
#wll be the list "a', 'b'", 'c', '€

b

/12" = splice(list('a',

will be the list "a', 'b', 'XXX', 'e'
/13" = splice(list('a,'b','c',"'d,"e), 2, 2, list('XXX));
I mportant

This function will not modify the arguments directly. Instead a copy of the
input string or list is created, modified, and returned by the function. If you
ignore the return value, then the function call will have no effect.

Built-In Function Reference | 130

Name
panc:split — split a string using aregular expression

Synopsis
string[] split(regex, target);

string regex;
string target;

string[] split(regex, limt, target);

string regex;
long limt;
string target;

Description

The spl it function will split the t ar get string around matches of the given
regular expression. The regular expression is specified using the standard pan
regular expression syntax. If thel i mi t parameter is not specified, a default value
of Oisused. If thel i m t parameter is negative, then the function will match al
occurrences of the regular expression and return the result. A value of O will do
the same, except that empty strings at the end of the sequence will be removed. A
positive value will return an array withat most | i mi t entries. That is, the regular
expressionwill bematched at most | i m t -1 times; the unmatched part of the string
will be returned in the last element of the list.

Built-In Function Reference | 131

Name
panc:substr — extract a substring from a string

Synopsis
string substr(target, start);

string target;
| ong start;

string substr(target, start, length);

string target;
| ong start;
| ong | engt h;

Description

Thisfunction returnsthe part of the given string characterised by itsst ar t position
(starting from 0) and its| engt h. If | engt h is omitted, returns everything to the
end of the string. If st ar t is negative, starts that far from the end of the string; if
| engt h isnegative, leaves that many characters off the end of the string.

"/sl" = substr("abcdef", 2); # cdef
"/s2" = substr("abcdef", 1, 1); # b
"/s3" = substr("abcdef", 1, -1); # bcde
"/s4" = substr("abcdef", -4); # cdef
"/s5" = substr("abcdef", -4, 1); # c
"/s6" = substr("abcdef", -4, -1); # cde

Built-In Function Reference | 132

Name
panc:to_boolean — convert argument to a boolean value

Synopsis

bool ean to_bool ean(prop);

property prop;

Description

Thisfunction converts the given property into a boolean value. The numeric values
0 and 0.0 are considered f al se; other numbers, t r ue. The empty string and the

string "false” (ignoring case) will returnf al se; all other stringswill returnt r ue.
The function will not accept resources.

Built-In Function Reference | 133

Name
panc:to_double — convert argument to a double value

Synopsis

doubl e to_doubl e(prop);
property prop;
Description

This function converts the given property into a double.

If the argument is a string, then the string will be parsed to determine the double
value. Any valid literal double syntax can be used. Strings that do not represent a
valid double value will cause afatal error.

If the argument is a boolean, then the function will return 0. O or 1. O depending
on whether the boolean valueisf al se ort r ue, respectively.

If the argument is along, then the corresponding double value will be returned.

If the argument is a double, then the value is returned directly.

Built-In Function Reference | 134

Name
panc:to_long — convert argument to along value

Synopsis

| ong to_l ong(prop);
property prop;
Description

This function converts the given property into along value.

If the argument isastring, then the string will be parsed to determinethelong value.
The string may represent along value as an octal, decimal, or hexadecimal value.
The syntax is exactly the same as for specifying literal long values. String values
that cannot be parsed as along value will result in an error.

If the argument is a boolean, then the return value will be either 0 or 1 depending
on whether the booleanisf al se ort r ue, respectively.

If the argument is a double value, then the double value is rounded to the nearest
long value.

If the argument isalong value, it isreturned directly.

Built-In Function Reference | 135

Name
panc:to_lowercase — change all uppercase letters to lowercase

Synopsis

string to_| owercase(target);

string target;

Description

Thet o_| ower case function will convert all uppercase lettersinthet ar get to

lowercase. The United States (US) locale isforced for the conversion to guarantee
consistent behavior independent of the current default locale.

Built-In Function Reference | 136

Name
panc:to_string — convert argument to a string value

Synopsis
string to_string(elem;
el enent el em

Description

This function will convert the argument into a string. The function will create
a reasonable human-readable representation of al data types, including lists and
nlists.

Built-In Function Reference | 137

Name
panc:to_uppercase — change all lowercase |etters to uppercase

Synopsis

string to_uppercase(target);

string target;

Description

The to_uppercase function will convert all lowercase letters in the target to

uppercase. The United States (US) locale isforced for the conversion to guarantee
consistent behavior independent of the current default locale.

Built-In Function Reference | 138

Name
panc:traceback — print message and traceback to console

Synopsis

string traceback(nmsg);

string neg;

Description

Prints the argument and a traceback from the current execution point to the console
(stderr). Vauereturned is the argument. An argument that is not a string will cause

afata error; the traceback will still be printed. This may be selectively enabled or
disabled viaa compiler option. See the compiler manual for details.

Built-In Function Reference | 139

Name
panc:unescape — replaces escaped characters with ASCII characters

Synopsis

string unescape(str);
string str;
Description

This function replaces escaped characters in the given string st r to get back the
origina string. Thisisthe inverse of the escape function.

Built-In Function Reference | 140

Name
panc:value — retrieve a value specified by a path

Synopsis
el enent val ue(pat h);

string path;

Description

This function returns the element identified by the given path, which can be an
external path. An error occursif thereis no such element.
#/y will be 200

"X 100
WA'A 2 * value('/x");

Built-In Function Reference | 141

